Horm Metab Res 2005; 37: 39-43
DOI: 10.1055/s-2005-861361
Review
© Georg Thieme Verlag KG Stuttgart · New York

Pericytes and the Pathogenesis of Diabetic Retinopathy

H.-P.  Hammes1
  • 1 5. Medical Department, University Hospital Mannheim, University of Heidelberg, Germany
Further Information

Publication History

Received 14 December 2004

Accepted after Revision 18 February 2005

Publication Date:
25 May 2005 (online)

Abstract

Incipient diabetic retinopathy is characterized by increased vascular permeability and progressive vascular occlusion. Pericyte loss precedes capillary occlusion in the diabetic retina, but its cause remains unclear. One concept proposes that pericyte loss is the result of toxic product accumulation and induction of destructive cellular signals generated within the pericyte. Alternatively, new experimental data indicate that pericyte dropout may result from regulations which induce pericyte elimination as an active process. Pericytes are critical for the development of a proper retinal network, and appear protective for endothelial cells under hyperglycemic conditions. The unifying hypothesis of hyperglycemia-induced microvascular damage centers around hyperglycemia-induced mitochondrial overproduction of reactive oxygen species. The pharmacological prevention of acellular capillaries without the rescue of pericyte loss in experimental diabetic retinopathy suggests that the endothelium is the primary therapeutic target.

References

  • 1 Frank R N. Diabetic retinopathy.  N Engl J Med . Jan 1, 2004;  350 (1) 48-58
  • 2 Lindahl P, Johansson B R, Levéen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice.  Science. 1997;  277 242-245
  • 3 Betsholtz C. Insight into the physiological functions of PDGF through genetic studies in mice.  Cytokine Growth Factor Rev. 2004;  15 (4) 215-228
  • 4 Hohman T C, Nishimura C, Robison W G Jr. Aldose reductase and polyol in cultured pericytes of human retinal capillaries.  Exp Eye Res. 1989;  48 55-60
  • 5 Stitt A W, Li Y M, Gardiner T A, Bucala R, Archer D B, Vlassara H. Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats.  Am J Pathol. 1997;  150 523-531
  • 6 Mizutani M, Kern T S, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy.  J Clin Invest. 1996;  97 2883-2890
  • 7 Hammes H P, Lin J, Wagner P, Feng Y, vom Hagen F, Krzizok T, Renner O, Breier G, Brownlee M, Deutsch U. Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for. involvement in diabetic retinopathy.  Diabetes. 2004;  53 (4) 1104-1110
  • 8 Allt G, Lawrenson J G. Pericytes: cell biology and pathology.  Cells Tissues Organs. 2001;  169 1-11
  • 9 Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell and Tissue Research 2003 Jul 22
  • 10 Jain R K. Molecular regulation of vessel maturation.  Nat Med. 2003;  9 (6) 685-693
  • 11 Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M, Backstrom G, Fredriksson S, Landegren U, Nystrom H C, Bergstrom G, Dejana E, Ostman A, Lindahl P, Betsholtz C. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall.  Genes Dev. 2003;  17 1835-1840
  • 12 Hammes H P, Lin J, Renner O, Shani M, Lundqvist A, Betsholtz C, Brownlee M, Deutsch U. Pericytes and the pathogenesis of diabetic retinopathy.  Diabetes. 2002;  51 3107-3112
  • 13 Uemura A, Ogawa M, Hirashima M, Fujiwara T, Koyama S, Takagi H, Honda Y, Wiegand S J, Yancopoulos G D, Nishikawa S. Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells.  J Clin Invest. 2002;  110 1619-1628
  • 14 Cogan D, Toussaint D, Kuwabara T. Retinal vascular pattern. IV. Diabetic retinopathy.  Arch Ophthalmol. 1961;  66 366-378
  • 15 Little H L, Jack R L, Patz A P, Forsham P H, Ashton N. Pathogenesis of diabetic retinopathy. Diabetic Retinopathy. New York; Thieme-Stratton Inc 1983: 85-106
  • 16 Engerman R L. Animal models of diabetic retinopathy.  Trans Am Acad Ophthalmol Otolaryngol. 1976;  81 OP710-715
  • 17 Hammes H P, Wellensiek B, Klöting I, Sickel E, Bretzel R G, Brownlee M B. The relationship of glycemic level to AGE accumulation and retinal pathology in the spontaneous diabetic hamster.  Diabetologia. 1998;  41 165-170
  • 18 Hammes H P, Martin S, Federlin K, Geisen K, Brownlee M. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy.  Proc Natl Acad Sci USA. 1991;  88 11 555-11 558
  • 19 Mansour S Z, Hatchell D L, Chandler D, Saloupis P, Hatchell M C. Reduction of basement membrane thickening in diabetic cat retina by sulindac.  Invest Ophthalmol Vis Sci. 1990 Mar 1;  31 (3) 457-463
  • 20 Enge M, Bjarnegård M, Gerhardt H, Gustafsson E, Kalén M, Asker N, Hammes H P, Shani M, Fässler R, Betsholtz C. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy.  EMBO J. 2002;  21 4307-4316
  • 21 Hellstrom M, Kalén M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse.  Development. 1999;  126 3047-3055
  • 22 Sims D E. Diversity within pericytes.  Clin Exp Pharmacol Physiol. 2000;  27 842-846
  • 23 Hellström M, Gerhardt H, Kalén M, Li X, Eriksson U, Wolburg H, Betsholtz C. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis.  J Cell Biol. 2001;  153 543-553
  • 24 Maisonpierre P C, Suri C, Jones P F, Bartunkova S, Wiegand S J, Radziejewski C, Compton D, McClain J, Aldrich T H, Papadopoulos N, Daly T J, Davis S, Sato T N, Yancopoulos G D. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis.  Science. 1997;  277 55-60
  • 25 Brownlee M. Biochemistry and molecular cell biology of diabetic complications.  Nature. 2001;  414 813-820
  • 26 Nishikawa T, Edelstein D, Du X L, Yamagishi S, Matsumara T, Kaneda Y, Yorek M, Beebe D, Oates P, Hammes H P, Giardino I, Brownlee M. Normalizing Mitochondrial Superoxide Production Blocks Three Major Pathways of Hyperglycemic Damage.  Nature. 2000;  404 787-790
  • 27 Du X, Matsumura T, Edelstein D, Rossetti L, Zsengeller Z, Szabo C, Brownlee M. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells.  J Clin Invest. 2003 Oct;  112 (7) 1049-1057
  • 28 Hammes H P, Du X, Edelstein D, Taguchi T, Matsumara T, Ju Q, Lin J, Bierhaus A, Nawroth P, Hannak D, Neumaier M, Bergfeld R, Giardino I, Brownlee M. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy.  Nature Medicine. 2003;  9 294-299

H.-P. Hammes, M. D.

5. Medical Department, University Hospital Mannheim

Theodor-Kutzer-Ufer 1 - 3 · 68167 Mannheim · Germany

Phone: +49 (621) 383 2663

Fax: +49 (621) 383 2663 ·

Email: hans-peter.hammes@med5.ma.uni-heidelberg.de

    >