Neuropediatrics 2005; 36(4): 230-239
DOI: 10.1055/s-2005-865864
Review Article

Georg Thieme Verlag KG Stuttgart · New York

Inflammation and Neuroaxonal Injury in Multiple Sclerosis and AIDS Dementia Complex: Implications for Neuroprotective Treatment

K. M. Rostásy1
  • 1Department of Pediatrics and Pediatric Neurology, Georg-August University, Göttingen, Germany
Further Information

Publication History

Received: March 17, 2005

Accepted after Revision: June 24, 2005

Publication Date:
24 August 2005 (online)

Abstract

Multiple sclerosis (MS) and AIDS dementia complex (ADC), also termed HIV-associated dementia (HAD), are two examples of CNS diseases with a strong inflammatory component. In particular, macrophage/microglia activation in the deep white matter (DWM) is a key feature of both diseases. Activated macrophages/microglia have been shown to produce multiple cellular substances which can cause injury and apoptosis to all cell types in the CNS. This potentially provides a link between the initial pathogenic event and subsequent widespread neuroaxonal injury, which recent studies have found to be an early finding and an important determinant of clinical burden in both diseases. This review summarizes important immunopathological and neurobiological aspects of MS and ADC, with a special focus on the relation between macrophage/microglia activation and neuroaxonal injury, and discusses potential neuroprotective strategies.

References

  • 1 De Simone R, Giampaolo A, Giometto B, Gallo P, Levi G, Peschle C, Aloisi F. The costimulatory molecule B7 is expressed on human microglia in culture and in multiple sclerosis acute lesions.  J Neuropathol Exp Neurol. 1995;  54 175-187
  • 2 Panek R B, Benveniste E N. Class II MHC gene expression in microglia. Regulation by the cytokines IFN-gamma, TNF-alpha, and TGF-beta.  J Immunol. 1995;  154 2846-2854
  • 3 Wilt S G, Milward E, Zhou J M, Nagasato K, Patton H, Rusten R, Griffin D E, O'Connor M, Dubois-Dalcq M. In vitro evidence for a dual role of tumor necrosis factor alpha in human immunodeficiency virus type 1 encephalopathy.  Ann Neurol. 1995;  37 381-394
  • 4 Yeung M C, Pulliam L, Lau A S. The HIV envelope protein gp120 is toxic to human brain-cell cultures through the induction of interleukin-6 and tumor necrosis factor.  AIDS. 1995;  9 137-143
  • 5 Adamson D C, Wildemann B, Sasaki M, Glass J D, McArthur J C, Christov V I, Dawson T M, Dawson V L. Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp 41.  Science. 1996;  274 1917-1920
  • 6 Kaul M, Lipton S. Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis.  Proc Natl Acad Sci USA. 1999;  96 8212-8216
  • 7 Rostásy K M, Monti L, Yiannoutsos C, Kneissl M, Bell J, Kemper T L. et al . HIV infection, iNOS expression and microglial activation: pathogenetic relationship to the AIDS dementia complex.  Ann Neurol. 1999;  46 207-216
  • 8 Werner P, Pitt D, Raine C S. Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocytes and axonal damage.  Ann Neurol. 2001;  50 169-180
  • 9 Masliah E, Heaton R K, Marcotte T D, Ellie R J, Wiley C A, Mallory M. et al . Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC group. HIV Neurobehavioural Research Center.  Ann Neurol. 1997;  42 963-972
  • 10 Everall I P, Heaton R K, Marcotte T D, Ellis R J, McCutchan J A, Atkinson J H. et al . Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus cognitive disorder. HNRC group. HIV Neurobehavioural Research Center.  Brain Pathol. 1999;  9 209-217
  • 11 Trapp B D, Jeterson J, Ransohoff R M, Rudick R, Moerk S, Boe L. Axonal transection in the lesions of multiple sclerosis.  N Engl J Med. 1998;  338 278-285
  • 12 Trapp B D, Ransohoff R M, Rudick R. Axonal pathology in multiple sclerosis: relationship to neurologic disability.  Curr Opin Neurol. 1999;  12 295-302
  • 13 Pelletier J, Suchet L, Witjas T, Habib M, Guttmann C R, Salamon G. et al . A longitudinal study of callosal atrophy and interhemispheric dysfunction in relapsing-remitting multiple sclerosis.  Arch Neurol. 2001;  58 105-111
  • 14 Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Brueck W. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decrease over time.  Brain. 2002;  125 2202-2212
  • 15 Adle-Biassette H, Chretien F, Wingertsmann L, Hery C, Ereau T, Scaravelli F, Tardieu M, Gray F. Neuronal apoptosis does not correlate with dementia in HIV-infection but is related to microglial activation and axonal damage.  Neuropathol Appl Neurobiol. 1999;  25 123-133
  • 16 Pesini P, Kopp J, Wong H, Walsh J H, Grant G, Hokfelt T. An immunohistochemical marker for Wallerian degeneration of fibers in the central and peripheral nervous system.  Brain Res. 1999;  828 41-59
  • 17 Mathews P M, De Stefano N, Narayanan S, Francis G S, Wolinsky J S, Antel J P. et al . Putting magnetic resonance spectroscopy studies in context: axonal damage and disability in multiple sclerosis.  Semin Neurol. 1998;  18 327-336
  • 18 De Stefano N, Matthews P M, Fu L, Narayanan S, Stanley J, Francis G S, Antel J P, Arnold D L. Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study.  Brain. 1998;  121 1469-1477
  • 19 Chang L, Ernst T, Leonido-Yee M, Walot I, Singer E. Cerebral metabolite abnormalities correlate with clinical severity of HIV-1 cognitive motor complex.  Neurology. 1999;  52 100-108
  • 20 Yiannoutsos C T, Ernst T, Chang L, Lee P L, Richards T, Marra C M. et al . Regional patterns of brain metabolites in AIDS dementia complex.  NeuroImage. 2004;  23 928-935
  • 21 Chang L, Lee P L, Yiannoutsos C, Ernst T, Marra C, Richards T. et al . A multicenter in vivo proton MRS study of HIV-associated brain injury and the effects of aging.  NeuroImage. 2004;  23 1336-1347
  • 22 Kapaki E, Paraskevas G P, Michalopoulou M, Kilidieas K. Increased cerebrospinal fluid tau protein in multiple sclerosis.  Eur Neurol. 2000;  43 228-232
  • 23 Süssmuth S D, Reiber H, Tumani H. Tau protein in cerebrospinal fluid (CSF): a blood-CSF barrier related evaluation in patients with various neurological diseases.  Neurosci Lett. 2001;  300 95-98
  • 24 Rostásy K M, Withut E, Pohl D, Lange P, Ciesielcyk B, Diehm R, Gärtner J, Otto M. Tau, phospho-tau and S-100 B protein in cerebrospinal fluid of children with multiple sclerosis.  J Child Neurol. 2005;  in press
  • 25 Duquette P, Murray T J, Pleines J, Ebers G C, Sadovnick D, Weldon P. et al . Multiple sclerosis in childhood: clinical profile in 125 patients.  J Pediatr. 1987;  111 359-363
  • 26 Simone I L, Carrara D, Tortorella C, Liguori M, Lepore V, Pellegrini F. et al . Course and prognosis in early-onset MS. Comparison with adult-onset forms.  Neurology. 2002;  59 1922-1928
  • 27 Hohol M J, Olek M J, Orav E J, Stazzone L, Hafler D A, Khoury S J. et al . Treatment of progressive multiple sclerosis with pulse cyclophosphomide/methylprednisolone: response to therapy is linked to the duration of progressive disease.  Mult Scler. 1999;  5 403-409
  • 28 Amato M P, Ponziani G, Bartolozzi M L, Siracusa G. A prospective study on the natural history of multiple sclerosis: clues to the conduct and interpretation of clinical trials.  J Neurol Sci. 1999;  168 96-106
  • 29 Noseworthy J H, Lucchinetti C, Rodriguez M, Weinshenker B G. Multiple sclerosis.  N Engl J Med. 2000;  343 938-952
  • 30 Filippi M. Magnetic resonance imaging findings predicting subsequent disease course in patients at presentation with clinically isolated syndromes suggestive of multiple sclerosis.  Neurol Sci. 2001;  22 (Suppl 2) S49-51
  • 31 Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination.  Ann Neurol. 2000;  47 707-717
  • 32 Bitch A, Schuchaerdt, Bunkowski S, Kuhlmann T, Brück W. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation.  Brain. 2000;  123 1174-1783
  • 33 Peterson J W, Bo L, Mork S, Chang A, Trapp B D. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions.  Ann Neurol. 2001;  50 389-400
  • 34 Hanefeld F, Bauer H J, Christen H J, Kruse B, Bruhn H, Frahm J. Multiple sclerosis in childhood: report of 15 cases.  Brain Dev. 1991;  13 410-416
  • 35 Paolillo A, Pozzilli C, Gasperini C, Giugni E, Mainero C, Giuliani S. et al . Brain atrophy in relapsing-remitting multiple sclerosis: relationship with ‘black holes’, disease duration and clinical disability.  J Neurol Sci. 2000;  174 85-91
  • 36 Barkhof F. Assessing treatment effects on axonal loss-evidence from MRI monitored clinical trials.  J Neurol. 2004;  251 (Suppl 4) IV6-12
  • 37 Smith K J, Kapoor R, Felts P A. Demyelination: the role of reactive oxygen and nitrogen species.  Brain Pathol. 1999;  9 69-92
  • 38 Smith K J, Kapoor R, Hall S M, Davies M. Electrically active axons degenerate when exposed to nitric oxide.  Ann Neurol. 2001;  49 470-476
  • 39 Kapoor R, Davies M, Baker P, Hall S M, Smith K J. Blockers of sodium and calcium entry protect axons from nitric oxide-mediated degeneration.  Ann Neurol. 2003;  53 74-83
  • 40 Werner P, Pitt D, Raine C S. Multiple sclerosis: Altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage.  Ann Neurol. 2001;  50 169-180
  • 41 Edgar J M, McLaughlin M, Yool D, Zhang S C, Fowler J H, Montague P. et al . Oligodendroglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia.  Cell Biol. 2004;  166 121-131
  • 42 Diestel A, Aktas O, Hackel D, Häke I, Neier S, Raine C S. et al . Activation of microglial poly(ADP-ribose)-polymerase-1 by cholesterol breakdown products during neuroinflammation: a link between demyelination and neuronal damage.  J Exp Med. 2004;  198 1729-1740
  • 43 Gveric D, Kaltschmidt C, Cuzner L, Newcombe J. Transcription factor NF-κB and inhibitor IkBa are localized in macrophages in active Multiple Sclerosis lesions.  J Neuropath Exp Neurol. 1998;  57 168-178
  • 44 Rostásy K M, Monti L, Yiannoutsos C, Wu J, Bell J, Hedreen J, Navia B A. NFkB activation, TNF-α expression, and apoptosis in the AIDS-dementia-complex.  J NeuroVirol. 2000;  6 537-543
  • 45 Craner M J, Hains B C, Lo A C, Black J A, Waxman S G. Co-localization of sodium channel Nav1.6 and the sodium-calcium exchanger at sites of axonal injury in the spinal cord in EAE.  Brain. 2004;  127 294-303
  • 46 Craner M J, Newcombe J, Black J A, Hartle C, Cuzner M L, Waxman S G. Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger.  Proc Natl Acad Sci USA. 2004;  101 8168-8173
  • 47 Stys P K, Waxman S G, Ransom B R. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger.  J Neurosci. 1992;  12 430-439
  • 48 Shields D C, Schaecher K E, Saido T C, Banik N L. A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain.  Proc Natl Acad Sci USA. 1999;  96 11486-11491
  • 49 Silber E, Semra Y K, Gregson N A, Sharief M K. Patients with progressive multiple sclerosis have elevated antibodies to neurofilament subunit.  Neurology. 2002;  58 1372-1381
  • 50 Pender M P. The pathogenesis of primary progressive multiple sclerosis: antibody-mediated attack and no repair?.  J Clin Neurosci. 2004;  11 689-692
  • 51 Yong V W. Differential mechanisms of action of interferon-beta and glatiramer aetate in MS.  Neurology. 2002;  59 802-808
  • 52 Calabresi P A, Pelfrey C M, Tranquill L R, Maloni H, McFarland H F. VLA-4 expression on peripheral blood lymphocytes is downregulated after treatment of multiple sclerosis with interferon beta.  Neurology. 1997;  49 1111-1116
  • 53 Schreiner B, Mitsdoerffer M, Kieseier B C, Chen L, Hartung H P, We M, Wiendl H. Interferon-beta enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation: relevance for the immune modulatory effect in multiple sclerosis.  J Neuroimmunol. 2004;  155 172-182
  • 54 Avolio C, Giuliani F, Liuzzi G M, Ruggieri M, Paolicelli D, Riccio P. et al . Adhesion molecules and matrix metalloproteinases in multiple sclerosis: effects induced by interferon-beta.  Brain Res Bull. 2003;  61 357-364
  • 55 Duda P W, Schmied M C, Cook S L, Krieger J I, Hafler D A. Glatiramer acetate (Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis.  J Clin Invest. 2000;  105 967-976
  • 56 PRISMS study group . Randomized double-blind placebo-controlled study of interferon-1 a in relapsing/remitting multiple sclerosis.  Lancet. 1998;  352 1498-1504
  • 57 PRISMSMS/MRI study group and the University of British Columbia Analysis Group . PRISMS-4: Long-term efficacy of interferon-1 a in relapsing MS.  Neurology. 2001;  56 1628-1636
  • 58 Johnson K P, Brooks B R, Cohen J A, Ford C C, Goldstein J, Lisak R P. et al . Copolymer 1 Multiple Sclerosis Study Group. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind, placebo-controlled trial.  Neurology. 2001;  57 S16-24
  • 59 Pohl P, Rostásy K M, Gärtner J, Hanefeld F. Treatment of early onset multiple sclerosis with subcutaneous interferon-beta-1 a.  Neurology. 2005;  64 888-890
  • 60 Miller D H, Khan O A, Sheremata W A, Blumhardt L D, Rice G P, Libonati M A. et al . International Natalizumab Multiple Sclerosis Trial Group. A controlled trial of natalizumab for relapsing- remitting multiple sclerosis.  N Engl J Med. 2003;  348 15-23
  • 61 Kwak B, Mulhaupt F, Myit S, Mach F. Statins as a newly recognized type of immunomodulator.  Nat Med. 2000;  6 1399-1402
  • 62 Neuhaus O, Strasser-Fuchs S, Fazekas F, Kieseier B C, Niederwieser G, Hartung H P, Archelos J J. Statins as immunomodulators: comparison with interferon-beta 1 b in MS.  Neurology. 2000;  59 990-997
  • 63 Prieto J M, Dapena D, Lema M, Ares B, Cacabelos P, Noya M. Pentoxifylline: is it useful in multiple sclerosis?.  Reviews in Neurology. 2001;  32 529-531
  • 64 Wiendl H, Hohlfeld R. Therapeutic approaches in multiple sclerosis: lessons from failed and interrupted treatment trials.  Bio Drugs. 2002;  16 183-200
  • 65 Bechthold D A, Kapoor R, Smith K J. Flecainide in experimental autoimmune encephalomyelitis.  Ann Neurol. 2004;  55 607-616
  • 66 Frank J A, Richert N, Lewis B, Bash C, Howard T, Civil R, Stone R, Eaton J, McFarland H, Leist T. A pilot study of recombinant insulin-like growth factor-1 in seven multiple sclerosis patients.  Mult Scler. 2002;  8 24-29
  • 67 Stadelmann C, Kerschensteiner M, Misgeld T, Brück W, Hohlfeld R, Lassmann H. BDNF and gp145 trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells.  Brain. 2000;  125 75-85
  • 68 Linker R A, Maurer M, Gaupp S, Martini R, Holtmann B, Giess R. et al . CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation.  Nat Med. 2000;  8 620-624
  • 69 Brines M L, Ghezzi P, Keenan S, Agnello D, de Lanerolle N C, Cerami C. et al . Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury.  Proc Natl Acad Sci USA. 2000;  9 10526-10531
  • 70 Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M. et al . Erythropoietin therapy for acute stroke is both safe and beneficial.  Mol Med. 2002;  8 495-505
  • 71 Navia B A, Jordan B, Price R W. The AIDS dementia complex I: Clinical features.  Ann Neurol. 1986;  19 517-535
  • 72 Price R W, Brew B, Sidtis J, Rosenblum M, Scheck A C, Cleary P. The brain in AIDS: Central nervous system HIV-1 infection and AIDS dementia complex.  Science. 1988;  239 586-592
  • 73 Sanchez-Ramon S, Canto-Nogues C, Munoz-Fernandez M A. Reconstructing the course of HIV1-associated progressive encephalopathy in children.  Med Sci Monit. 2002;  8 249-252
  • 74 Tardieu M, Le Chenadec J, Persoz A, Meyer L, Blanche S, Mayaux M J. HIV-1-related encephalopathy in infants compared with children and adults. French Pediatric HIV Infection Study and the SEROCO Group.  Neurology. 2000;  54 1089-1095
  • 75 Sacktor N, Lyles R H, Skolasky R, Kleeberger C, Selnes O A. et al . Multicenter AIDS Cohort Study. HIV-associated neurologic disease incidence changes: Multicenter AIDS Cohort Study, 1990 - 1998.  Neurology. 2001;  56 257-260
  • 76 Navia B A, Price R W. The acquired immunodeficiency syndrome dementia complex as the presenting sole manifestation of human immunodeficiency virus infection.  Arch Neurol. 1987;  44 65-69
  • 77 Rostásy K M, Monti L, Lipton S A, Hedreen J C, Gonzalez R G, Navia B A. HIV-leukoencephalopathy and TNF-α expression in neurons.  J Neurol Neurosurg Psychiatry. 2005;  76 960-964
  • 78 Cosenza M A, Zhao M L, Si Q, Lee S C. Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis.  Brain Pathol. 2002;  12 442-455
  • 79 Gartner S. HIV infection and dementia.  Science. 2000;  287 602-604
  • 80 Wiley C, Achim C. Human immunodeficiency virus encephalitis is the pathological correlate of dementia in acquired immunodeficiency syndrome.  Ann Neurol. 1994;  36 673-676
  • 81 Smith T W, DeGirolami U, Henin D, Bolgert F, Hauw J J. Human immunodeficiency virus (HIV) leukoencephalopathy and the microcirculation.  J Neuropathol Exp Neurol. 1990;  49 357-370
  • 82 Petito C K, Cash K S. Blood brain barrier abnormalities in the acquired immune deficiency syndrome: Immunohistochemical localization of serum proteins to postmortem brains.  Ann Neurol. 1992;  32 658-666
  • 83 Power C, Kong P A, Crawford T O, Wesselingh S, Glass J D, McArthur J C, Trapp B D. Cerebral white matter changes in acquired human immunodeficiency syndrome dementia: Alterations of the blood-brain barrier.  Ann Neurol. 1993;  34 339-350
  • 84 Petito C K, Roberts B. Evidence of apoptotic cell death in HIV encephalitis.  Am J Path. 1995;  146 1121-1130
  • 85 Meyerhoff D J, MacKay S, Poole N, Dillon W P, Weiner M W, Fein G. N-Acetylaspartate reductions measured by 1 H MRSI in cognitively impaired HIV-seropositive individuals.  Magn Reson Imaging. 1994;  12 653-659
  • 86 Tracey I, Carr C A, Guimaraes A R, Worth J L, Navia B A, Gonzalez R G. Brain choline-containing compounds are elevated in HIV-positive patients before the onset of AIDS dementia complex: A proton magnetic resonance spectroscopic study.  Neurology. 1996;  46 783-788
  • 87 Zheng J, Ghorpade A, Niemann D, Cotter R L, Thylin M R, Epstein L. et al . Lymphotropic virions affect chemokine receptor-mediated neuronal signaling and apoptosis: implications for human immunodeficiency virus type 1-associated dementia.  J Virol. 1999;  73 8256-8267
  • 88 Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton S A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures.  Proc Natl Acad Sci USA. 1995;  92 7162-7166
  • 89 Grilli M, Memo M. Nuclear factor-kB/Rel proteins. A point of convergence of signalling pathways relevant in neuronal function and dysfunction.  Biochem Pharmacol. 1999;  57 1-7
  • 90 New D R, Ma M, Epstein L G, Nath A, Gelbard H A. Human immunodeficiency virus type 1 Tat protein induces death by apoptosis in primary human neuron cultures.  J Neurovirol. 1997;  3 168-173
  • 91 Shi B, Raina J, Lorenzo A, Busciglio J, Gabuzda D. Neuronal apoptosis induced by HIV-1 Tat protein and TNF-α: potentiation of neurotoxicity by oxidative stress and implications for HIV-1 dementia.  J Neurovirol. 1998;  4 281-290
  • 92 Rostásy K M, Gorgun G, Kramer M, Melanson S M, Mathys J M, Yiannoutsos C. et al . TNF-α leads to increased cell surface expression of CXCR4 in SK-N-MC cells.  J Neurovirol. 2005;  11 1-9
  • 93 Glass J D, Fedor H, Wesselingh S, McArthur J. Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia.  Ann Neurol. 1995;  38 755-762
  • 94 Wesselingh S L, Takahashi K, Glass J D, McArthur J C. Cellular localization of tumor necrosis factor mRNA in neurological tissue from HIV-infected patients by combined reverse transcriptase/polymerase chain reaction in situ hybridization and immunohistochemistry.  J Neuroimmunology. 1997;  74 1-8
  • 95 Conant K, McArthur J C, Griffin D E, Sjulson L, Wahl L M, Irani D N. Cerebrospinal fluid levels of MMP-2, 7, and 9 are elevated in association with human immunodeficiency virus dementia.  Ann Neurol. 1999;  46 391-398
  • 96 Ferrando S, van Gorp W, McElhiney M. Highly active antiretroviral treatment in HIV infection: benefits for neuropsychological function.  AIDS. 1998;  12 65-70
  • 97 Marra C M, Lockhart D, Zunt J R, Perrin M, Coombs R W, Collier A C. Changes in CSF and plasma HIV-RNA and cognition after starting potent antiretroviral therapy.  Neurology. 2003;  60 1388-1390
  • 98 Navia B A, Dafni U, Simpson D, Tucker T, Singer E, McArthur J C. et al . A phase I/II trial with nimodipine for HIV-related neurological complications.  Neurology. 1998;  19 517-524
  • 99 Dana Consortium on the Therapy of HIV Dementia and Related Cognitive Disorders . A randomized, double-blind, placebo-controlled trial of deprenyl and thioctic acid in human immunodeficiency virus-associated cognitive impairment.  Neurology. 1998;  50 645-651
  • 100 Sacktor N, Schifitto G, McDermott M P, Marder K, McArthur J C, Kieburtz K. Transdermal selegiline in HIV-associated cognitive impairment: pilot, placebo-controlled study.  Neurology. 2000;  54 233-235
  • 101 Pulliam L, Irwin I, Kusdra L, Rempel H, Flitter W D, Garland W A. CPI-1189 attenuates effects of suspected neurotoxins associated with AIDS dementia: a possible role for ERK activation.  Brain Res. 2001;  893 95-103
  • 102 Clifford D B, McArthur J C, Schifitto G, Kieburtz K, McDermott M P, Letendre S, Cohen B A, Marder K, Ellis R J, Marra C M. Neurologic AIDS Research Consortium . A randomized clinical trial of CPI-1189 for HIV-associated cognitive-motor impairment.  Neurology. 2002;  59 1568-1573
  • 103 Lipton S A. Memantine prevents HIV coat protein-induced neuronal injury in-vitro.  Neurology. 1992;  42 1403-1405
  • 104 Nath A, Haughey N J, Jones M, Anderson C, Bell J E, Geiger J D. Synergistic neurotoxicity by human immunodeficiency virus proteins Tat and gp120: protection by memantine.  Ann Neurol. 2000;  47 186-194
  • 105 Kaul M, Garden G A, Lipton S A. Pathways to neuronal injury and apoptosis in HIV-associated dementia.  Nature. 2001;  410 988-994

Kevin Rostásy

Department of Pediatrics and Pediatric Neurology
Georg-August University Göttingen

Robert-Koch-Straße 40

37075 Göttingen

Germany

Email: Krostasy@excite.com

    >