Pneumologie 2019; 73(05): 288-305
DOI: 10.1055/a-0882-9366
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Atmen: Luftschadstoffe und Gesundheit – Teil I

Breathing: Ambient Air Pollution and Health – Part I
H. Schulz
1   Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, Institut für Epidemiologie, Neuherberg/München
,
S. Karrasch
1   Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, Institut für Epidemiologie, Neuherberg/München
2   Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, Klinikum der Ludwig-Maximilians-Universität, München; Comprehensive Pneumology Center Munich (CPC-M), Mitglied des Deutschen Zentrums für Lungenforschung (DZL), München
,
G. Bölke
3   Charité – Universitätsmedizin Berlin, Arbeitsbereich ambulante Pneumologie der Medizinischen Klinik mit Schwerpunkt Infektiologie und Pneumologie, Berlin
,
J. Cyrys
1   Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, Institut für Epidemiologie, Neuherberg/München
,
C. Hornberg
4   Universität Bielefeld, Fakultät für Gesundheitswissenschaften, AG Umwelt und Gesundheit, Bielefeld
,
R. Pickford
1   Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, Institut für Epidemiologie, Neuherberg/München
,
A. Schneider
1   Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, Institut für Epidemiologie, Neuherberg/München
,
C. Witt
3   Charité – Universitätsmedizin Berlin, Arbeitsbereich ambulante Pneumologie der Medizinischen Klinik mit Schwerpunkt Infektiologie und Pneumologie, Berlin
,
B. Hoffmann
5   Heinrich-Heine-Universität Düsseldorf, Medizinische Fakultät, Institut für Arbeits-, Sozial- und Umweltmedizin, Düsseldorf
› Author Affiliations
Further Information

Publication History

eingereicht 20 March 2019

akzeptiert 25 March 2019

Publication Date:
16 April 2019 (online)

Zusammenfassung

Die Exposition gegenüber Luftschadstoffen wird von der Weltgesundheitsorganisation weltweit als eine führende Gesundheitsgefährdung und als der wichtigste umweltbedingte Risikofaktor mit besonders hoher Krankheitslast in Ländern mit niedrigem und mittlerem Einkommen angesehen.

Die Luftschadstoffbelastung besteht aus hochkomplexen Gemischen verschiedenster organischer und anorganischer Bestandteile natürlichen oder anthropogenen Ursprungs, die lokal entstehen oder durch Ferntransport über hunderte von Kilometern regional eingebracht werden können. Zusätzlich wird die Schadstoffkonzentration durch die regionalen, meteorologischen Verhältnisse beeinflusst. Dementsprechend können Schadstoffkonzentration und Zusammensetzung an einem Ort deutlich variieren, zeigen aber typischerweise einen Tages-, Wochen- und Jahresgang.

Mittels gesetzlicher Grenzwerte wie in der „Air Quality Directive“ der Europäischen Union festgelegt, soll eine Gesundheitsgefährdung der Bevölkerung durch die Schadstoffe minimiert werden. Allerdings weichen die Grenzwerte der Europäischen Union von den Empfehlungen der WHO insbesondere für Feinstaub deutlich nach oben ab.

Zur Abschätzung der Luftschadstoffbelastung wird auf einzelne Indikatoren zurückgegriffen, die die partikuläre, wie Feinstaub bis 2,5 µm (PM2.5) bzw. bis 10 µm aerodynamischen Durchmesser (PM10), und die gasförmige Belastung, wie Stickstoffdioxid (NO2) und Ozon (O3), charakterisieren. Für die meisten Luftschadstoffe wurden über die letzten Jahrzehnte in der westlichen Welt abfallende Konzentrationen beobachtet, sodass hier v. a. die Gesundheitsgefährdung bei geringerer Schadstoffbelastung im Vordergrund steht. Insbesondere Ballungsgebiete in Deutschland leiden aber noch unter erhöhter Luftverschmutzung.

Zahlreiche Studien haben in den letzten Jahrzehnten schädliche Auswirkungen von Luftschadstoffen auf die Gesundheit der Bevölkerung belegt. Die Auswirkungen betreffen v. a. den Atemtrakt und das kardiovaskuläre System und reichen von unspezifischen Atemwegs- und kardiovaskulären Symptomen über Beeinträchtigungen der Lungenfunktion, vermehrter Medikamenteneinnahme und akuter Exazerbation von vorbestehenden Lungenerkrankungen, Herzinfarkten und Schlaganfällen bis hin zu Todesfällen. Neuere Studien weisen auf weitere Gesundheitsendpunkte, wie z. B. Atherosklerose, Einschränkungen des fetalen Wachstums, der kognitiven Funktion und neuronalen Entwicklung, Diabetes mellitus sowie auf ein verbessertes Verständnis der zugrundeliegenden pathophysiologischen Mechanismen hin.

In der „Global Burden of Disease Study“ von 2015 wird die Bedeutung der Luftschadstoffbelastung für Mortalität und Morbidität v. a. durch chronische Erkrankungen quantifiziert. Bei der vorzeitigen Mortalität, v. a. aufgrund von kardiovaskulären Todesursachen, lag PM2.5 in der Außenluft weltweit auf Rang 5, unmittelbar hinter den allgemeinen Risikofaktoren erhöhter Blutdruck, Rauchen sowie erhöhte Glukose- und Cholesterinwerte. In Deutschland liegt die Krankheitslast durch Luftverschmutzung an zehnter Stelle der Risikofaktoren und ist damit auch hierzulande der wichtigste umweltbezogene Risikofaktor. Entsprechend zeigen Studien, dass der Einfluss von Luftschadstoffen die Sterblichkeit in Europa erhöht und die mittlere Lebenserwartung um etwa ein Jahr reduzieren kann.

In dem hier vorgestellten Positionspapier fasst die Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin den aktuellen Wissensstand zu den Gesundheitseffekten von Luftschadstoffen zusammen und leitet daraus Empfehlungen für einen umweltbezogenen Gesundheitsschutz ab. Der hier vorgestellte erste Teil fokussiert sich auf allgemeine Grundlagen und die Wirkungen im Atemtrakt.

Abstract

According to the World Health Organisation (WHO), environmental air pollution is among the leading risks for noncommunicable diseases worldwide in terms of the global disease burden and the leading environmental cause of disease and death particularly in low- and middle-income countries.

Air pollution is a highly complex mixture of various organic and inorganic components from natural and anthropogenic sources, occurring locally or being introduced by long-range transport of pollutants. Moreover, air pollution is modified by regional meteorological conditions. Accordingly, levels and composition of air pollution can vary substantially at a site, nevertheless typically showing a diurnal, weekly and annual cycle. Regulatory limits, as defined by the “Air Quality Guidelines” of the European Union, are enforced to minimize air pollution associated health hazards for the population. However, legal limits of the European Union clearly exceed the guideline values of the WHO, especially with regard to particulate matter.

The burden of ambient air pollution is monitored by means of different indicator pollutants, especially particulate matter up to 2.5 µm (PM2.5) or 10 µm (PM10) in aerodynamic diameter, and gases such as nitrogen dioxide (NO2) or ozone (O3). In recent decades, in the western world, decreasing levels of air pollution have been achieved so that the main focus is nowadays on health hazards caused by low concentrations of pollutants. However, in Germany, especially urban areas are still suffering under higher levels of air pollution.

In recent decades, a large number of studies have highlighted the harmful effects of air pollution on public health. Primarily, the respiratory and the cardiovascular system are targeted with exposure to higher levels of air pollution being associated with reduced lung function, unspecific respiratory symptoms, increased use of medication and acute exacerbations of lung diseases, myocardial infarction, stroke and even death. Further negative health outcomes such as atherosclerosis, reduced fetal growth, diabetes and limitations of cognitive function and neuronal development are supported by recent studies. Moreover, these studies have substantially improved our understanding of the underlying pathophysiological mechanisms.

The 2015 “Global Burden of Disease Study” underlined the significance of air pollution for public health, particularly in relation to increased morbidity and mortality resulting from chronic diseases. As causal factor for premature death, particularly cardiovascular death, ambient PM2.5 is the number 5 risk factor, well behind the commonly known risk factors elevated blood pressure, smoking, and increased blood levels of glucose and cholesterol. Ambient air pollution is the number 10 risk factor for the disease burden and also the leading environmental risk factor in Germany. Different studies have estimated that ambient air pollution increases mortality and may decrease life expectancy on average by about one year in the European Union.

State of the art knowledge on the negative health effects of ambient air pollution and recommendations for environmental safety and health are introduced by this statement of the German Respiratory Society (Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin). General concepts and health effects concerning the respiratory system are described in the first part of this statement.

 
  • Literaturverzeichnis

  • 1 Schulz H, Karrasch S, Bölke G. et al. Atmen: Luftschadstoffe und Gesundheit. Berlin: Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin e.V; 2018 https://pneumologie.de/fileadmin/user_upload/DGP_Luftschadstoffe_Positionspapier_20181127.pdf
  • 2 GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990 – 2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet (London, England) 2017; 390: 1345-1422
  • 3 WHO. Ambient (outdoor) air quality and health Key facts. 2018 http://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
  • 4 European Environment Agency. Air quality in Europe – 2017 report. 2017 https://www.eea.europa.eu/publications/air-quality-in-europe-2017
  • 5 European Environment Agency. Air quality in Europe – 2018 report. 2018 https://www.eea.europa.eu/publications/air-quality-in-europe-2018
  • 6 Schneider ACJ, Breitner S, Kraus U. et al. Quantifizierung von umweltbedingten Krankheitslasten aufgrund der Stickstoffdioxid-Exposition in Deutschland. Umweltbundesamt; 2018
  • 7 Grandjean P, Bellanger M. Calculation of the disease burden associated with environmental chemical exposures: application of toxicological information in health economic estimation. Environmental health: a global access science source 2017; 16: 123
  • 8 Pascal M, Corso M, Chanel O. et al. Assessing the public health impacts of urban air pollution in 25 European cities: results of the Aphekom project. The Science of the total environment 2013; 449: 390-400
  • 9 WHO. Ambient (outdoor) air quality and health. 2018 http://www.who.int/mediacentre/factsheets/fs313/en/
  • 10 WHO. Evolution of WHO air quality guidelines: past, present and future. 2017 http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2017/evolution-of-who-air-quality-guidelines-past,-present-and-future-2017
  • 11 Minelli C, Wei I, Sagoo G. et al. Interactive effects of antioxidant genes and air pollution on respiratory function and airway disease: a HuGE review. American journal of epidemiology 2011; 173: 603-620
  • 12 Whyand T, Hurst JR, Beckles M. et al. Pollution and respiratory disease: can diet or supplements help? A review.. Respiratory research 2018; 19: 79
  • 13 WHO. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: 2009 https://apps.who.int/iris/handle/10665/44203
  • 14 Senechal H, Visez N, Charpin D. et al. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity. The Scientific World Journal 2015; DOI: 10.1155/2015/940243.
  • 15 Hornberg C, Claßen T, Steckling N. et al. Quantifizierung der Auswirkungen verschiedener Umweltbelastungen auf die Gesundheit der Menschen in Deutschland unter Berücksichtigung der bevölkerungsbezogenen Expositionsermittlung (Verteilungsbasierte Analyse gesundheitlicher Auswirkungen von Umwelt-Stressoren, VegAS). 2013
  • 16 Stanek LW, Brown JS, Stanek J. et al. Air pollution toxicology – a brief review of the role of the science in shaping the current understanding of air pollution health risks. Toxicological sciences: an official journal of the Society of Toxicology 2011; 120 (Suppl. 01) S8-27
  • 17 Zylka-Menhorn V. Luftschadstoffe Feinstäube – Winzlinge mit großer Wirkung. Deutsches Ärzteblatt 2005; 102: A954-A958
  • 18 Schober W, Behrendt H. Einfluss von Umweltfaktoren auf die Allergieentstehung. HNO 2008; 56: 752-756 10.1007/s00106-008-1728-8
  • 19 Costa DL. Historical Highlights of Air Pollution Toxicology. Toxicological sciences: an official journal of the Society of Toxicology 2018; 164: 5-8
  • 20 Wichmann HE. Gesundheitliche Risiken von Stickstoffdioxid im Vergleich zu Feinstaub und anderen verkehrsabhängigen Luftschadstoffen. Umweltmedizin Hygiene Arbeitsmedizin 2018; 23: 57-71
  • 21 Wichmann H-E, Drexler H, Herr C. et al. Wird die gesundheitliche Bedeutung von NO2 in der öffentlichen Diskussion richtig eingeschätzt?. Umweltmedizin Hygiene Arbeitsmedizin 2018; 23: 53-55
  • 22 (US-EPA) USEPA. Integrated Science Assessment for Oxides of Nitrogen – Health Criteria EPA/600/R-15/068. 2016 1-1148
  • 23 Wichmann HE. Expertise zu gesundheitlichen Risiken von Stickstoffdioxid im Vergleich zu Feinstaub und anderen verkehrsabhängigen Luftschadstoffen Bewertung durch internationale Expertengruppen. Interministeriellen Arbeitsgruppe „Luftreinhaltung“ der Landesregierung Baden-Württemberg 2018: 1-26
  • 24 Beelen R, Raaschou-Nielsen O, Stafoggia M. et al. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet (London, England) 2014; 383: 785-795
  • 25 Malsch AKF, Pinheiro JP, Krämer A. et al. Zur Bestimmung von „Environmental/Burden of Disease“ (BoD/EBD) in Deutschland. Abschlußbericht. Materialien Umwelt und Gesundheit, 65. Bielefeld: Landesinstitut für den Öffentlichen Gesundheitsdienst (LÖGD9 NRW); 2006
  • 26 Prüss-Üstün A, Mathers C, Corvalán C. et al. Introduction and methods: assessing the environmental burden of disease at national and local levels. 2003
  • 27 Claßen T. Lärm macht krank! – Gesundheitliche Wirkungen von Lärmbelastungen in Städten.. Informationen zur Raumentwicklung 2013; 3: 223-234
  • 28 Lelieveld J, Klingmuller K, Pozzer A. et al. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. European heart journal 2019; DOI: 10.1093/eurheartj/ehz135.
  • 29 WHO. Over half a million premature deaths annually in the European Region attributable to household and ambient air pollution. 2018 http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/news/news/2018/5/over-half-a-million-premature-deaths-annually-in-the-european-region-attributable-to-household-and-ambient-air-pollution
  • 30 WHO. Burden of disease from ambient air pollution for 2016. 2018 https://www.who.int/airpollution/data/AAP_BoD_results_May2018_final.pdf
  • 31 WHO. Ambient air pollution: A global assessment of exposure and burden of disease. 2016 http://www.who.int/phe/publications/air-pollution-global-assessment/en/
  • 32 WHO. Review of evidence on health aspects of air pollution – REVIHAAP project: final technical report. 2013 http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/review-of-evidence-on-health-aspects-of-air-pollution-revihaap-project-final-technical-report
  • 33 Life, death, and disability in 2016 The Global burden of disease study. The Lancet 2017; 390: 1083-1464
  • 34 Cohen AJ, Brauer M, Burnett R. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet (London, England) 2017; 389: 1907-1918
  • 35 Plass D, Vos T, Hornberg C. et al. Entwicklung der Kranheitslast in Deutschland Trends in disease burden in Germany – results, implications and limitations of the Global Burden of Disease Study. Deutsches Arzteblatt international 2014; 111: 629-638
  • 36 Institute for Health Metrics and Evaluation (IHME). Germany – What risk factors drive the most death and disability combined?. 2016 http://www.healthdata.org/germany , Abgerufen 18.10.2018
  • 37 United States Environmental Protection Agency (EPA). Integrated Science Assessment (ISA) for Oxides of Nitrogen – Health Criteria (Final Report, 2016). 2016 https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=310879
  • 38 Kettunen J, Lanki T, Tiittanen P. et al. Associations of fine and ultrafine particulate air pollution with stroke mortality in an area of low air pollution levels. Stroke 2007; 38: 918-922
  • 39 Lanzinger S, Schneider A, Breitner S. et al. Associations between ultrafine and fine particles and mortality in five central European cities – Results from the UFIREG study. Environment international 2016; 88: 44-52
  • 40 Wichmann HE, Spix C, Tuch T. et al. Daily mortality and fine and ultrafine particles in Erfurt, Germany part I: role of particle number and particle mass. Research report 2000; 5-86 , discussion 87 – 94
  • 41 WHO. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment. 2006 http://apps.who.int/iris/handle/10665/69477
  • 42 Beelen R, Hoek G, Raaschou-Nielsen O. et al. Natural-cause mortality and long-term exposure to particle components: an analysis of 19 European cohorts within the multi-center ESCAPE project. Environmental health perspectives 2015; 123: 525-533
  • 43 Crouse DL, Peters PA, Villeneuve PJ. et al. Within- and between-city contrasts in nitrogen dioxide and mortality in 10 Canadian cities; a subset of the Canadian Census Health and Environment Cohort (CanCHEC). Journal of exposure science & environmental epidemiology 2015; 25: 482-489
  • 44 Shi L, Zanobetti A, Kloog I. et al. Low-Concentration PM2.5 and Mortality: Estimating Acute and Chronic Effects in a Population-Based Study. Environmental health perspectives 2016; 124: 46-52
  • 45 Pope 3rd CA, Ezzati M. et al. Fine-particulate air pollution and life expectancy in the United States. The New England journal of medicine 2009; 360: 376-386
  • 46 Committee on the Medical Effects of Air Pollutants (COMEAP) Chaired by Kelly F. Associations of long-term average concentrations of nitrogen dioxide with mortality. 2018 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/734799/COMEAP_NO2_Report.pdf
  • 47 Naess O, Nafstad P, Aamodt G. et al. Relation between concentration of air pollution and cause-specific mortality: four-year exposures to nitrogen dioxide and particulate matter pollutants in 470 neighborhoods in Oslo, Norway. American journal of epidemiology 2007; 165: 435-443
  • 48 Cesaroni G, Badaloni C, Gariazzo C. et al. Long-term exposure to urban air pollution and mortality in a cohort of more than a million adults in Rome. Environmental health perspectives 2013; 121: 324-331
  • 49 Jerrett M, Burnett RT, Pope 3rd A. et al. Spatiotemporal Analysis of Air Pollution and Mortality in California Based on the American Cancer Society Cohort: Final Report. Sacramento: State of California Air Resources Board Research Division; 2011 http://www.arb.ca.gov/research/apr/past/06-332.pdf
  • 50 Hoek G, Krishnan RM, Beelen R. et al. Long-term air pollution exposure and cardio- respiratory mortality: a review. Environmental health: a global access science source 2013; 12: 43
  • 51 Bolte G, Bunge C, Hornberg C. et al. Umweltgerechtigkeit. Chancengleichheit bei Umwelt und Gesundheit: Konzepte, Datenlage und Handlungsperspektiven. Bern: Hogrefe, vorm. Verlag Hans Huber; 2012
  • 52 Sacks JD, Stanek LW, Luben TJ. et al. Particulate matter-induced health effects: who is susceptible?. Environmental health perspectives 2011; 119: 446-454
  • 53 Bürkner HJ. Vulnerabilität und Resilienz – Forschungsstand und sozialwissenschaftliche Untersuchungsperspektiven. IRS-Working Paper; 2010 43. Online Publikation (Zitierdatum 23. 08. 2018): http://www.ecologyandsociety.org/vol12/iss1/art23
  • 54 Christmann G, Ibert O, Kilper H. et al. Vulnerabilität und Resilienz in sozialräumlicher Perspektive. Begriffliche Klärungen und theoretischer Rahmen. Working Paper 44, Leibniz-Institut für Regionalentwicklung und Strukturplanung. 2011 44. Online Publikation (Zitierdatum 23. 08. 2018): http://www.ecologyandsociety.org/vol12/iss1/art23
  • 55 Burghardt D, Dederich M, Dziabel N. Vulnerabilität in verschiedenen Wissenschaften: Ein Überblick. Themenheft Verwundbarkeit und Widerstandskraft 2016; 39: 19-31
  • 56 Riedel N, Machtolf M, Claßen T. et al. Vulnerable Bevölkerungsgruppen – eine lebensweltliche Risiko- und Potenzialanalyse als Ansatz zur Konkretisierung der wirksamen Umwelt- und Gesundheitsvorsorge in umweltbezogenen Planungsprozessen und Zulassungsverfahren. UVP-report 2017; 31: 109-117
  • 57 Hartlik J, Machtolf M. Gesundheit in der Umweltprüfung. In: Baumgart S, Köchler H, Ritzinger A. et al. Hrsg. Planung für gesundheitsfördernde Städte Forschungsberichte der ARL 08. Hannover: Akademie für Raumforschung und Landesplanung; 2018: 168-195
  • 58 Pope 3rd CA, Burnett RT. et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama 2002; 287: 1132-1141
  • 59 Brüske-Hohlfeld I, Peters A. Epidemiological Studies on Particulate Air Pollution. In: Krug H. Hrsg. Nanotechnology, Vol 2: Environmental Aspects. Weinheim: Wiley-VCH; 2008: 267-290
  • 60 Heinrich J. Feinstaub und Allergien im Kindesalter. Umweltmedizin 2007; 10: 40-42
  • 61 Shumake KL, Sacks JD, Lee JS. et al. Susceptibility of older adults to health effects induced by ambient air pollutants regulated by the European Union and the United States. Aging clinical and experimental research 2013; 25: 3-8
  • 62 Bentayeb M, Simoni M, Baiz N. et al. Adverse respiratory effects of outdoor air pollution in the elderly. The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease 2012; 16: 1149-1161
  • 63 Gibson GJ, Loddenkemper R, Sibille Y. et al. The European Lung White Book: Respiratory Health and Disease in Europe. Sheffield: European Respiratory Society; 2013
  • 64 Analitis A, Katsouyanni K, Dimakopoulou K. et al. Short-term effects of ambient particles on cardiovascular and respiratory mortality. Epidemiology (Cambridge, Mass) 2006; 17: 230-233
  • 65 Katsouyanni K, Touloumi G, Samoli E. et al. Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 project. Epidemiology (Cambridge, Mass) 2001; 12: 521-531
  • 66 Gryparis A, Forsberg B, Katsouyanni K. et al. Acute effects of ozone on mortality from the “air pollution and health: a European approach” project. American journal of respiratory and critical care medicine 2004; 170: 1080-1087
  • 67 Pope 3rd CA, Thun MJ. et al. Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. American journal of respiratory and critical care medicine 1995; 151: 669-674
  • 68 Int Panis L, Provost EB, Cox B. et al. Short-term air pollution exposure decreases lung function: a repeated measures study in healthy adults. Environmental health: a global access science source 2017; 16: 60
  • 69 Adam M, Schikowski T, Carsin AE. et al. Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis. The European respiratory journal 2015; 45: 38-50
  • 70 Bowatte G, Erbas B, Lodge CJ. et al. Traffic-related air pollution exposure over a 5-year period is associated with increased risk of asthma and poor lung function in middle age. The European respiratory journal 2017; DOI: 10.1183/13993003.02357-2016.
  • 71 Schultz ES, Litonjua AA, Melen E. Effects of Long-Term Exposure to Traffic-Related Air Pollution on Lung Function in Children. Current allergy and asthma reports 2017; 17: 41
  • 72 Frischer T. Effects of outdoor pollutants on the respiratory health of children. Wiener medizinische Wochenschrift (1946) 2015; 165: 343-346
  • 73 Mudway IS, Dundas I, Wood HE. et al. Impact of London’s low emission zone on air quality and children’s respiratory health: a sequential annual cross-sectional study. The Lancet Public health 2019; 4: e28-e40
  • 74 Gehring U, Gruzieva O, Agius RM. et al. Air pollution exposure and lung function in children: the ESCAPE project. Environmental health perspectives 2013; 121: 1357-1364
  • 75 Barone-Adesi F, Dent JE, Dajnak D. et al. Long-Term Exposure to Primary Traffic Pollutants and Lung Function in Children: Cross-Sectional Study and Meta-Analysis. PloS one 2015; 10: e0142565
  • 76 Gauderman WJ, Avol E, Gilliland F. et al. The effect of air pollution on lung development from 10 to 18 years of age. The New England journal of medicine 2004; 351: 1057-1067
  • 77 Gauderman WJ, Urman R, Avol E. et al. Association of improved air quality with lung development in children. The New England journal of medicine 2015; 372: 905-913
  • 78 Milanzi EB, Koppelman GH, Smit HA. et al. Air pollution exposure and lung function until age 16 years: the PIAMA birth cohort study. The European respiratory journal 2018; 52 DOI: 10.1183/13993003.00218-2018.
  • 79 Simoni M, Baldacci S, Maio S. et al. Adverse effects of outdoor pollution in the elderly. Journal of thoracic disease 2015; 7: 34-45
  • 80 Xu Q, Li X, Wang S. et al. Fine Particulate Air Pollution and Hospital Emergency Room Visits for Respiratory Disease in Urban Areas in Beijing, China, in 2013. PloS one 2016; 11: e0153099
  • 81 DeVries R, Kriebel D, Sama S. Outdoor Air Pollution and COPD-Related Emergency Department Visits, Hospital Admissions, and Mortality: A Meta-Analysis. Copd 2017; 14: 113-121
  • 82 Li J, Sun S, Tang R. et al. Major air pollutants and risk of COPD exacerbations: a systematic review and meta-analysis. International journal of chronic obstructive pulmonary disease 2016; 11: 3079-3091
  • 83 Hansel NN, McCormack MC, Kim V. The Effects of Air Pollution and Temperature on COPD. Copd 2016; 13: 372-379
  • 84 Bloemsma LD, Hoek G, Smit LAM. Panel studies of air pollution in patients with COPD: Systematic review and meta-analysis. Environmental research 2016; 151: 458-468
  • 85 Kurmi OP, Semple S, Simkhada P. et al. COPD and chronic bronchitis risk of indoor air pollution from solid fuel: a systematic review and meta-analysis. Thorax 2010; 65: 221-228
  • 86 Po JY, FitzGerald JM, Carlsten C. Respiratory disease associated with solid biomass fuel exposure in rural women and children: systematic review and meta-analysis. Thorax 2011; 66: 232-239
  • 87 Sehgal M, Rizwan SA, Krishnan A. Disease burden due to biomass cooking-fuel-related household air pollution among women in India. Global health action 2014; 7: 25326
  • 88 Assad NA, Balmes J, Mehta S. et al. Chronic obstructive pulmonary disease secondary to household air pollution. Seminars in respiratory and critical care medicine 2015; 36: 408-421
  • 89 Schikowski T, Sugiri D, Ranft U. et al. Long-term air pollution exposure and living close to busy roads are associated with COPD in women. Respiratory research 2005; 6: 152
  • 90 Cai Y, Schikowski T, Adam M. et al. Cross-sectional associations between air pollution and chronic bronchitis: an ESCAPE meta-analysis across five cohorts. Thorax 2014; 69: 1005-1014
  • 91 Andersen ZJ, Hvidberg M, Jensen SS. et al. Chronic obstructive pulmonary disease and long-term exposure to traffic-related air pollution: a cohort study. American journal of respiratory and critical care medicine 2011; 183: 455-461
  • 92 Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet (London, England) 2014; 383: 1581-1592
  • 93 Zheng XY, Ding H, Jiang LN. et al. Association between Air Pollutants and Asthma Emergency Room Visits and Hospital Admissions in Time Series Studies: A Systematic Review and Meta-Analysis. PloS one 2015; 10: e0138146
  • 94 Holz O, Mucke M, Paasch K. et al. Repeated ozone exposures enhance bronchial allergen responses in subjects with rhinitis or asthma. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology 2002; 32: 681-689
  • 95 Tunnicliffe WS, Burge PS, Ayres JG. Effect of domestic concentrations of nitrogen dioxide on airway responses to inhaled allergen in asthmatic patients. Lancet (London, England) 1994; 344: 1733-1736
  • 96 Khreis H, Kelly C, Tate J. et al. Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and meta-analysis. Environment international 2017; 100: 1-31
  • 97 Molter A, Simpson A, Berdel D. et al. A multicentre study of air pollution exposure and childhood asthma prevalence: the ESCAPE project. The European respiratory journal 2015; 45: 610-624
  • 98 Gowers AM, Cullinan P, Ayres JG. et al. Does outdoor air pollution induce new cases of asthma? Biological plausibility and evidence; a review. Respirology (Carlton, Vic) 2012; 17: 887-898
  • 99 Anderson HR, Favarato G, Atkinson RW. Long-term exposure to air pollution and the incidence of asthma: meta-analysis of cohort studies. Air Quality, Atmosphere & Health 2013; 6: 47-56
  • 100 Anderson H, Favarato G, Atkinson R. Long-term exposure to outdoor air pollution and the prevalence of asthma: meta-analysis of multi-community prevalence studies. Air Quality, Atmosphere & Health 2013; 6: 57-68
  • 101 Fuertes E, Bracher J, Flexeder C. et al. Long-term air pollution exposure and lung function in 15 year-old adolescents living in an urban and rural area in Germany: The GINIplus and LISAplus cohorts. International journal of hygiene and environmental health 2015; 218: 656-665
  • 102 Alexis NE, Carlsten C. Interplay of air pollution and asthma immunopathogenesis: a focused review of diesel exhaust and ozone. International immunopharmacology 2014; 23: 347-355
  • 103 Beninca E, van Boven M, Hagenaars T. et al. Space-time analysis of pneumonia hospitalisations in the Netherlands. PloS one 2017; 12: e0180797
  • 104 Neupane B, Jerrett M, Burnett RT. et al. Long-term exposure to ambient air pollution and risk of hospitalization with community-acquired pneumonia in older adults. American journal of respiratory and critical care medicine 2010; 181: 47-53
  • 105 Hooper LG, Young MT, Keller JP. et al. Ambient Air Pollution and Chronic Bronchitis in a Cohort of U. S. Women. Environmental health perspectives 2018; 126: 027005
  • 106 Brugha R, Grigg J. Urban air pollution and respiratory infections. Paediatric respiratory reviews 2014; 15: 194-199
  • 107 Hertz-Picciotto I, Baker RJ, Yap PS. et al. Early childhood lower respiratory illness and air pollution. Environmental health perspectives 2007; 115: 1510-1518
  • 108 MacIntyre EA, Gehring U, Molter A. et al. Air pollution and respiratory infections during early childhood: an analysis of 10 European birth cohorts within the ESCAPE Project. Environmental health perspectives 2014; 122: 107-113
  • 109 Darrow LA, Klein M, Flanders WD. et al. Air pollution and acute respiratory infections among children 0-4 years of age: an 18-year time-series study. American journal of epidemiology 2014; 180: 968-977
  • 110 Bai L, Su X, Zhao D. et al. Exposure to traffic-related air pollution and acute bronchitis in children: season and age as modifiers. J Epidemiol Community Health 2018; 72: 426-433
  • 111 Nhung NTT, Amini H, Schindler C. et al. Short-term association between ambient air pollution and pneumonia in children: A systematic review and meta-analysis of time-series and case-crossover studies. Environmental pollution (Barking, Essex: 1987) 2017; 230: 1000-1008
  • 112 Jary H, Simpson H, Havens D. et al. Household Air Pollution and Acute Lower Respiratory Infections in Adults: A Systematic Review. PloS one 2016; 11: e0167656
  • 113 Dherani M, Pope D, Mascarenhas M. et al. Indoor air pollution from unprocessed solid fuel use and pneumonia risk in children aged under five years: a systematic review and meta-analysis. Bulletin of the World Health Organization 2008; 86: 390-398c
  • 114 Day DB, Xiang J, Mo J. et al. Association of Ozone Exposure With Cardiorespiratory Pathophysiologic Mechanisms in Healthy Adults. JAMA internal medicine 2017; 177: 1344-1353
  • 115 Winterbottom CJ, Shah RJ, Patterson KC. et al. Exposure to Ambient Particulate Matter Is Associated With Accelerated Functional Decline in Idiopathic Pulmonary Fibrosis. Chest 2018; 153: 1221-1228
  • 116 Johannson KA, Vittinghoff E, Morisset J. et al. Air Pollution Exposure Is Associated With Lower Lung Function, but Not Changes in Lung Function, in Patients With Idiopathic Pulmonary Fibrosis. Chest 2018; 154: 119-125
  • 117 Johannson KA, Vittinghoff E, Lee K. et al. Acute exacerbation of idiopathic pulmonary fibrosis associated with air pollution exposure. The European respiratory journal 2014; 43: 1124-1131
  • 118 Sese L, Nunes H, Cottin V. et al. Role of atmospheric pollution on the natural history of idiopathic pulmonary fibrosis. Thorax 2018; 73: 145-150
  • 119 de Jong K, Vonk JM, Zijlema WL. et al. Air pollution exposure is associated with restrictive ventilatory patterns. The European respiratory journal 2016; 48: 1221-1224
  • 120 Conti S, Harari S, Caminati A. et al. The association between air pollution and the incidence of idiopathic pulmonary fibrosis in Northern Italy. The European respiratory journal 2018; DOI: 10.1183/13993003.00397-2017.
  • 121 Sack C, Vedal S, Sheppard L. et al. Air pollution and subclinical interstitial lung disease: the Multi-Ethnic Study of Atherosclerosis (MESA) air-lung study. The European respiratory journal 2017; DOI: 10.1183/13993003.00559-2017.
  • 122 Johannson KA, Balmes JR, Collard HR. Air pollution exposure: a novel environmental risk factor for interstitial lung disease?. Chest 2015; 147: 1161-1167
  • 123 Dockery DW, Pope 3rd CA. et al. An association between air pollution and mortality in six U.S. cities. The New England journal of medicine 1993; 329: 1753-1759
  • 124 Lepeule J, Laden F, Dockery D. et al. Chronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environmental health perspectives 2012; 120: 965-970
  • 125 Beelen R, Hoek G, van den Brandt PA. et al. Long-term exposure to traffic-related air pollution and lung cancer risk. Epidemiology (Cambridge, Mass) 2008; 19: 702-710
  • 126 Raaschou-Nielsen O, Andersen ZJ, Hvidberg M. et al. Lung cancer incidence and long-term exposure to air pollution from traffic. Environmental health perspectives 2011; 119: 860-865
  • 127 Raaschou-Nielsen O, Andersen ZJ, Beelen R. et al. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). The Lancet Oncology 2013; 14: 813-822
  • 128 Fajersztajn L, Veras M, Barrozo LV. et al. Air pollution: a potentially modifiable risk factor for lung cancer. Nature reviews Cancer 2013; 13: 674-678
  • 129 Benbrahim-Tallaa L, Baan RA, Grosse Y. et al. Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. Lancet Oncol 2012; 13: 663-664
  • 130 Hamra GB, Laden F, Cohen AJ. et al. Lung Cancer and Exposure to Nitrogen Dioxide and Traffic: A Systematic Review and Meta-Analysis. Environmental health perspectives 2015; 123: 1107-1112
  • 131 Loomis D, Grosse Y, Lauby-Secretan B. et al. The carcinogenicity of outdoor air pollution. The Lancet Oncology 2013; 14: 1262-1263
  • 132 Hamra GB, Guha N, Cohen A. et al. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environmental health perspectives 2014; 122: 906-911
  • 133 Melen E, Barouki R, Barry M. et al. Promoting respiratory public health through epigenetics research: an ERS Environment Health Committee workshop report. The European respiratory journal 2018; DOI: 10.1183/13993003.02410-2017.