Thromb Haemost 2021; 121(08): 1008-1020
DOI: 10.1055/a-1450-8178
Review Article

2021 Update of the International Council for Standardization in Haematology Recommendations for Laboratory Measurement of Direct Oral Anticoagulants

1   Department of Pharmacy-Namur Thrombosis and Hemostasis Center, University of Namur, Namur, Belgium
2   Qualiblood SA, Namur, Belgium
,
Dorothy M. Adcock
3   Laboratory Corporation of America, Burlington North Carolina, United States
,
Shannon M. Bates
4   Department of Medicine, McMaster University Medical Centre, Hamilton, Ontario, Canada
,
Emmanuel J. Favaloro
5   Department of Haematology, Sydney Centres for Haemostasis and Thrombosis, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
,
Isabelle Gouin-Thibault
6   Department of Hematology-Hemostasis, IRSET-INSERM-1085, University Hospital, Rennes, France
,
Cecilia Guillermo
7   Hospital de Clínicas “Dr Manuel Quintela,” Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
,
Yohko Kawai
8   Sanno Hospital, Laboratory Medicine, Tokyo, Japan
,
Edelgard Lindhoff-Last
9   Cardiology Angiology Center Bethanien, CCB Vascular Center, CCB Coagulation Center, Frankfurt, Germany
,
Steve Kitchen
10   Royal Hallamshire Hospital, Coagulation Sheffield, South Yorks, United Kingdom
,
11   Hemophilia Treatment Center, University of California, Davis Health System, Sacramento, California, United States
› Author Affiliations
Funding None.

Abstract

In 2018, the International Council for Standardization in Haematology (ICSH) published a consensus document providing guidance for laboratories on measuring direct oral anticoagulants (DOACs). Since that publication, several significant changes related to DOACs have occurred, including the approval of a new DOAC by the Food and Drug Administration, betrixaban, and a specific DOAC reversal agent intended for use when the reversal of anticoagulation with apixaban or rivaroxaban is needed due to life-threatening or uncontrolled bleeding, andexanet alfa. In addition, this ICSH Working Party recognized areas where additional information was warranted, including patient population considerations and updates in point-of-care testing. The information in this manuscript supplements our previous ICSH DOAC laboratory guidance document. The recommendations provided are based on (1) information from peer-reviewed publications about laboratory measurement of DOACs, (2) contributing author's personal experience/expert opinion and (3) good laboratory practice.



Publication History

Received: 01 December 2020

Accepted: 17 March 2021

Accepted Manuscript online:
19 March 2021

Article published online:
30 May 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Gosselin RC, Adcock DM, Bates SM. et al. International Council for Standardization in Haematology (ICSH) recommendations for laboratory measurement of direct oral anticoagulants. Thromb Haemost 2018; 118 (03) 437-450
  • 2 European Medicines Agency. Ondexxya: Summary of Product Characteristics. 2021 . Accessed March 3, 2021 at: https://www.ema.europa.eu/en/medicines/human/EPAR/ondexxya
  • 3 Food and Drug Administration. Andexxa: Prescribing Information. 2018 . Accessed March 3, 2021 at: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/andexxa-coagulation-factor-xa-recombinant-inactivated-zhzo
  • 4 Witt DM, Nieuwlaat R, Clark NP. et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: optimal management of anticoagulation therapy. Blood Adv 2018; 2 (22) 3257-3291
  • 5 Steffel J, Verhamme P, Potpara TS. et al; ESC Scientific Document Group. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J 2018; 39 (16) 1330-1393
  • 6 Douxfils J, Ageno W, Samama CM. et al. Laboratory testing in patients treated with direct oral anticoagulants: a practical guide for clinicians. J Thromb Haemost 2018; 16 (02) 209-219
  • 7 Ruff CT, Giugliano RP, Braunwald E. et al. Association between edoxaban dose, concentration, anti-Factor Xa activity, and outcomes: an analysis of data from the randomised, double-blind ENGAGE AF-TIMI 48 trial. Lancet 2015; 385 (9984): 2288-2295
  • 8 Reilly PA, Lehr T, Haertter S. et al; RE-LY Investigators. The effect of dabigatran plasma concentrations and patient characteristics on the frequency of ischemic stroke and major bleeding in atrial fibrillation patients: the RE-LY Trial (Randomized Evaluation of Long-Term Anticoagulation Therapy). J Am Coll Cardiol 2014; 63 (04) 321-328
  • 9 Zhang L, Yan X, Fox KAA. et al. Associations between model-predicted rivaroxaban exposure and patient characteristics and efficacy and safety outcomes in patients with non-valvular atrial fibrillation. J Thromb Thrombolysis 2020; 50 (01) 20-29
  • 10 Reinecke I, Solms A, Willmann S. et al. Associations between model-predicted rivaroxaban exposure and patient characteristics and efficacy and safety outcomes in the prevention of venous thromboembolism. J Thromb Thrombolysis 2020; 50 (01) 12-19
  • 11 Solms A, Willmann S, Reinecke I. et al. Associations between model-predicted rivaroxaban exposure and patient characteristics and efficacy and safety outcomes in the treatment of venous thromboembolism. J Thromb Thrombolysis 2020; 50 (01) 1-11
  • 12 Toorop MMA, Lijfering WM, Scheres LJJ. The relationship between DOAC levels and clinical outcomes: the measures tell the tale. J Thromb Haemost 2020; 18 (12) 3163-3168
  • 13 Douxfils J, Mullier F, Dogné JM. Dose tailoring of dabigatran etexilate: obvious or excessive?. Expert Opin Drug Saf 2015; 14 (08) 1283-1289
  • 14 Kato ET, Giugliano RP, Ruff CT. et al. Efficacy and safety of edoxaban in elderly patients with atrial fibrillation in the ENGAGE AF-TIMI 48 trial. J Am Heart Assoc 2016; 5 (05) e003432
  • 15 Buckley LF, Rybak E, Aldemerdash A, Cheng JW, Fanikos J. Direct oral anticoagulants in patients with atrial fibrillation and renal impairment, extremes in weight, or advanced age. Clin Cardiol 2017; 40 (01) 46-52
  • 16 Chan KE, Giugliano RP, Patel MR. et al. Nonvitamin K anticoagulant agents in patients with advanced chronic kidney disease or on dialysis with AF. J Am Coll Cardiol 2016; 67 (24) 2888-2899
  • 17 Levy JH, Ageno W, Chan NC, Crowther M, Verhamme P, Weitz JI. Subcommittee on Control of Anticoagulation. When and how to use antidotes for the reversal of direct oral anticoagulants: guidance from the SSC of the ISTH. J Thromb Haemost 2016; 14 (03) 623-627
  • 18 Lindhoff-Last E. Direct oral anticoagulants (DOAC): management of emergency situations. Hamostaseologie 2017; 37 (04) 257-266
  • 19 Gendron N, Gay J, Lemoine M, Gaussem P, Lillo-Le-Louet A, Smadja DM. Usefulness of initial plasma dabigatran concentration to predict rebound after reversal. Haematologica 2018; 103 (05) e226-e229
  • 20 Tripodi A. To measure or not to measure direct oral anticoagulants before surgery or invasive procedures: reply. J Thromb Haemost 2016; 14 (12) 2559-2561
  • 21 Tripodi A. To measure or not to measure direct oral anticoagulants before surgery or invasive procedures. J Thromb Haemost 2016; 14 (07) 1325-1327
  • 22 Tripodi A, Marongiu F, Moia M. et al. The vexed question of whether or not to measure levels of direct oral anticoagulants before surgery or invasive procedures. Intern Emerg Med 2018; 13 (07) 1029-1036
  • 23 Albaladejo P, Bonhomme F, Blais N. et al; French Working Group on Perioperative Hemostasis (GIHP). Management of direct oral anticoagulants in patients undergoing elective surgeries and invasive procedures: updated guidelines from the French Working Group on Perioperative Hemostasis (GIHP) - September 2015. Anaesth Crit Care Pain Med 2017; 36 (01) 73-76
  • 24 Rimsans J, Douxfils J, Smythe MA. et al. Overview and practical application of coagulation assays in managing anticoagulation with direct oral anticoagulants (DOACs). Curr Pharmacol Rep 2020; 6: 241-259
  • 25 Shaw JR, Li N, Vanassche T. et al. Predictors of preprocedural direct oral anticoagulant levels in patients having an elective surgery or procedure. Blood Adv 2020; 4 (15) 3520-3527
  • 26 Douketis JD, Spyropoulos AC, Duncan J. et al. Perioperative management of patients with atrial fibrillation receiving a direct oral anticoagulant. JAMA Intern Med 2019; 179 (11) 1469-1478
  • 27 Martin K, Beyer-Westendorf J, Davidson BL, Huisman MV, Sandset PM, Moll S. Use of the direct oral anticoagulants in obese patients: guidance from the SSC of the ISTH. J Thromb Haemost 2016; 14 (06) 1308-1313
  • 28 Moll S, Crona DJ, Martin K. Direct oral anticoagulants in extremely obese patients: OK to use?. Res Pract Thromb Haemost 2018; 3 (02) 152-155
  • 29 Testa S, Legnani C, Antonucci E. et al; Coordinator of START2-Register. Drug levels and bleeding complications in atrial fibrillation patients treated with direct oral anticoagulants. J Thromb Haemost 2019; 17 (07) 1064-1072
  • 30 Testa S, Paoletti O, Legnani C. et al. Low drug levels and thrombotic complications in high-risk atrial fibrillation patients treated with direct oral anticoagulants. J Thromb Haemost 2018; 16 (05) 842-848
  • 31 Salmonson T, Dogné JM, Janssen H, Garcia Burgos J, Blake P. Non-vitamin-K oral anticoagulants and laboratory testing: now and in the future: views from a workshop at the European Medicines Agency (EMA). Eur Heart J Cardiovasc Pharmacother 2017; 3 (01) 42-47
  • 32 Willmann S, Thelen K, Kubitza D. et al. Pharmacokinetics of rivaroxaban in children using physiologically based and population pharmacokinetic modelling: an EINSTEIN-Jr phase I study. Thromb J 2018; 16: 32
  • 33 Rahman M, George C, Monagle P. Hot topics in coagulation testing: important considerations for testing children for bleeding/thrombotic disorders. Int J Lab Hematol 2020; 42 (Suppl. 01) 68-74
  • 34 Gosselin R, Douxfils J. Measuring direct oral anticoagulants. In: Favaloro EJ, Lippi G. eds. Hemostasis and Thrombosis. New York, NY: Humana Press; 2017: 217-225
  • 35 Gosselin RC, Douxfils J. Ecarin based coagulation testing. Am J Hematol 2020; 95 (07) 863-869
  • 36 Gosselin RC, Gosselin R, Douxfils J, Adcock D. Clinical pearls: laboratory assessments of direct oral anticoagulants (DOACS). Hamostaseologie 2017; 37 (04) 295-301
  • 37 Siriez R, Dogné JM, Gosselin R, Laloy J, Mullier F, Douxfils J. Comprehensive review of the impact of direct oral anticoagulants on thrombophilia diagnostic tests: practical recommendations for the laboratory. Int J Lab Hematol 2021; 43 (01) 7-20
  • 38 Godier A, Martin AC, Lessire S, Mullier F, Leblanc I, Gouin-Thibault I. Concentrations of direct oral anticoagulants according to guidelines for the periprocedural management of low bleeding risk procedures. Anaesth Crit Care Pain Med 2020; 39 (01) 121-122
  • 39 Sevenet PO, Cucini V, Hervé T. et al. Evaluation of DOAC Filter, a new device to remove direct oral anticoagulants from plasma samples. Int J Lab Hematol 2020; 42 (05) 636-642
  • 40 Kopytek M, Ząbczyk M, Malinowski KP, Undas A, Natorska J. DOAC-Remove abolishes the effect of direct oral anticoagulants on activated protein C resistance testing in real-life venous thromboembolism patients. Clin Chem Lab Med 2020; 58 (03) 430-437
  • 41 Exner T, Rigano J, Favaloro EJ. The effect of DOACs on laboratory tests and their removal by activated carbon to limit interference in functional assays. Int J Lab Hematol 2020; 42 (Suppl. 01) 41-48
  • 42 Platton S, Hunt C. Influence of DOAC Stop on coagulation assays in samples from patients on rivaroxaban or apixaban. Int J Lab Hematol 2019; 41 (02) 227-233
  • 43 Jourdi G, Delrue M, Stepanian A. et al. Potential usefulness of activated charcoal (DOAC remove®) for dRVVT testing in patients receiving direct oral anticoagulants. Thromb Res 2019; 184: 86-91
  • 44 Exner T, Favresse J, Lessire S, Douxfils J, Mullier F. Clotting test results correlate better with DOAC concentrations when expressed as a “correction ratio”; results before/after extraction with the DOAC Stop reagent. Thromb Res 2019; 179: 69-72
  • 45 Exner T, Ahuja M, Ellwood L. Effect of an activated charcoal product (DOAC Stop™) intended for extracting DOACs on various other APTT-prolonging anticoagulants. Clin Chem Lab Med 2019; 57 (05) 690-696
  • 46 Cox-Morton S, MacDonald S, Thomas W. A diagnostic solution for haemostasis laboratories for patients taking direct oral anticoagulants using DOAC-Remove. Br J Haematol 2019; 187 (03) 377-385
  • 47 Exner T, Michalopoulos N, Pearce J, Xavier R, Ahuja M. Simple method for removing DOACs from plasma samples. Thromb Res 2018; 163: 117-122
  • 48 De Kesel PM, Devreese KMJ. Direct oral anticoagulant adsorption: impact on lupus anticoagulant testing: review of the literature and evaluation on spiked and patient samples. J Thromb Haemost 2020; 18 (08) 2003-2017
  • 49 Ząbczyk M, Kopytek M, Natorska J, Undas A. The effect of DOAC-Stop on lupus anticoagulant testing in plasma samples of venous thromboembolism patients receiving direct oral anticoagulants. Clin Chem Lab Med 2019; 57 (09) 1374-1381
  • 50 Monteyne T, De Kesel P, Devreese KMJ. Interference of DOAC Stop and DOAC Remove in the thrombin generation assay and coagulation assays. Thromb Res 2020; 192: 96-99
  • 51 Kopatz WF, Brinkman HJM, Meijers JCM. Use of DOAC Stop for elimination of anticoagulants in the thrombin generation assay. Thromb Res 2018; 170: 97-101
  • 52 Bouvy C, Evrard J, Siriez R. et al. P220: Removal of DOACs from plasma: performance comparison and pre-analytical considerations of three different devices. ECTH 2018. Abstract Book 2018
  • 53 Depreter B, Devreese KM. Dilute Russell's viper venom time reagents in lupus anticoagulant testing: a well-considered choice. Clin Chem Lab Med 2017; 55 (01) 91-101
  • 54 Hillarp A, Strandberg K, Gustafsson KM, Lindahl TL. Unveiling the complex effects of direct oral anticoagulants on dilute Russell's viper venom time assays. J Thromb Haemost 2020; 18 (08) 1866-1873
  • 55 Sokol J, Nehaj F, Ivankova J, Mokan M, Mokan M. First evidence: rivaroxaban and apixaban reduce thrombin-dependent platelet aggregation. J Thromb Thrombolysis 2018; 46 (03) 393-398
  • 56 Perzborn E, Heitmeier S, Laux V. Effects of rivaroxaban on platelet activation and platelet-coagulation pathway interaction: in vitro and in vivo studies. J Cardiovasc Pharmacol Ther 2015; 20 (06) 554-562
  • 57 Shimizu M, Natori T, Tsuda K. et al. Thrombin-induced platelet aggregation: effect of dabigatran using automated platelet aggregometry. Platelets 2020; 31 (03) 360-364
  • 58 Jourdi G, Bachelot-Loza C, Mazoyer E. et al. Effect of rivaroxaban and dabigatran on platelet functions: in vitro study. Thromb Res 2019; 183: 159-162
  • 59 Königsbrügge O, Weigel G, Quehenberger P, Pabinger I, Ay C. Plasma clot formation and clot lysis to compare effects of different anticoagulation treatments on hemostasis in patients with atrial fibrillation. Clin Exp Med 2018; 18 (03) 325-336
  • 60 Carter RLR, Talbot K, Hur WS. et al. Rivaroxaban and apixaban induce clotting factor Xa fibrinolytic activity. J Thromb Haemost 2018; 16 (11) 2276-2288
  • 61 Ammollo CT, Semeraro F, Incampo F, Semeraro N, Colucci M. Dabigatran enhances clot susceptibility to fibrinolysis by mechanisms dependent on and independent of thrombin-activatable fibrinolysis inhibitor. J Thromb Haemost 2010; 8 (04) 790-798
  • 62 Semeraro F, Incampo F, Ammollo CT. et al. Dabigatran but not rivaroxaban or apixaban treatment decreases fibrinolytic resistance in patients with atrial fibrillation. Thromb Res 2016; 138: 22-29
  • 63 Douxfils J, Tamigniau A, Chatelain B, Goffinet C, Dogné JM, Mullier F. Measurement of non-VKA oral anticoagulants versus classic ones: the appropriate use of hemostasis assays. Thromb J 2014; 12: 24
  • 64 Macedo KA, Tatarian P, Eugenio KR. Influence of direct oral anticoagulants on anti-factor Xa measurements utilized for monitoring heparin. Ann Pharmacother 2018; 52 (02) 154-159
  • 65 Sairaku A, Nakano Y, Onohara Y. et al. Residual anticoagulation activity in atrial fibrillation patients with temporary interrupted direct oral anticoagulants: comparisons across 4 drugs. Thromb Res 2019; 183: 119-123
  • 66 Evrard J, Hardy M, Dogné JM. et al. Are the DOAC plasma level thresholds appropriate for clinical decision-making? A reappraisal using thrombin generation testing. Int J Lab Hematol 2021; 43 (01) e48-e51
  • 67 Reda S, Morimont L, Douxfils J, Rühl H. Can we measure the individual prothrombotic or prohemorrhagic tendency by global coagulation tests?. Hamostaseologie 2020; 40 (03) 364-378
  • 68 Douxfils J, Morimont L, Bouvy C. et al. Assessment of the analytical performances and sample stability on ST Genesia system using the STG-DrugScreen application. J Thromb Haemost 2019; 17 (08) 1273-1287
  • 69 Siguret V, Abdoul J, Delavenne X. et al. Rivaroxaban pharmacodynamics in healthy volunteers evaluated with thrombin generation and the active protein C system: modeling and assessing interindividual variability. J Thromb Haemost 2019; 17 (10) 1670-1682
  • 70 Metze M, Pfrepper C, Klöter T. et al. Inhibition of thrombin generation 12 hours after intake of direct oral anticoagulants. Res Pract Thromb Haemost 2020; 4 (04) 610-618
  • 71 Pfrepper C, Metze M, Siegemund A, Klöter T, Siegemund T, Petros S. Direct oral anticoagulant plasma levels and thrombin generation on ST Genesia system. Res Pract Thromb Haemost 2020; 4 (04) 619-627
  • 72 Hemker HC, Al Dieri R, Béguin S. Heparins: a shift of paradigm. Front Med (Lausanne) 2019; 6: 254
  • 73 Favresse J, Hardy M, van Dievoet MA. et al. Andexanet alfa for the reversal of factor Xa inhibitors. Expert Opin Biol Ther 2019; 19 (05) 387-397
  • 74 Lu G, DeGuzman FR, Hollenbach SJ. et al. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa. Nat Med 2013; 19 (04) 446-451
  • 75 Siegal DM, Curnutte JT, Connolly SJ. et al. Andexanet alfa for the reversal of factor Xa Inhibitor activity. N Engl J Med 2015; 373 (25) 2413-2424
  • 76 Connolly SJ, Crowther M, Eikelboom JW. et al; ANNEXA-4 Investigators. Full Study report of andexanet alfa for bleeding associated with factor Xa inhibitors. N Engl J Med 2019; 380 (14) 1326-1335
  • 77 European Medicines Agency. Praxbind: Summary of Product Characeteristics. 2021 . Accessed February 22, 2021 at: https://www.ema.europa.eu/documents/product-information/praxbind-epar-product-information_en.pdf
  • 78 Food and Drug Administration. Praxbind: Prescribing Information. Accessed February 23, 2021 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761025s002lbl.pdf
  • 79 Pollack Jr CV, Reilly PA, van Ryn J. et al. Idarucizumab for dabigatran reversal: full cohort analysis. N Engl J Med 2017; 377 (05) 431-441
  • 80 Gendron N, Chocron R, Billoir P. et al. Dabigatran level before reversal can predict hemostatic effectiveness of idarucizumab in a real-world setting. Front Med (Lausanne) 2020; 7: 599626
  • 81 Gendron N, Feral-Pierssens AL, Jurcisin I. et al. Real-world use of idarucizumab for dabigatran reversal in three cases of serious bleeding. Clin Case Rep 2017; 5 (03) 346-350
  • 82 Singh S, Nautiyal A, Belk KW. Real world outcomes associated with idarucizumab: population-based retrospective cohort study. Am J Cardiovasc Drugs 2020; 20 (02) 161-168
  • 83 van der Wall SJ, van Rein N, van den Bemt B. et al. Performance of idarucizumab as antidote of dabigatran in daily clinical practice. Europace 2019; 21 (03) 414-420
  • 84 Kermer P, Eschenfelder CC, Diener HC. et al. Antagonizing dabigatran by idarucizumab in cases of ischemic stroke or intracranial hemorrhage in Germany-Updated series of 120 cases. Int J Stroke 2020; 15 (06) 609-618
  • 85 Connolly SJ, Milling Jr TJ, Eikelboom JW. et al; ANNEXA-4 Investigators. Andexanet alfa for acute major bleeding associated with factor Xa inhibitors. N Engl J Med 2016; 375 (12) 1131-1141
  • 86 Hunt BJ, Neal MD, Stensballe J. Reversing anti-factor Xa agents and the unmet needs in trauma patients. Blood 2018; 132 (23) 2441-2445
  • 87 Connors JM. Testing and monitoring direct oral anticoagulants. Blood 2018; 132 (19) 2009-2015
  • 88 European Medicines Agency. Direct Health Care Professional Communication (DHCP): Ondexxya (Andexanet Alfa): Commercial Anti-FXa Activity Assays Are Unsuitable for Measuring Anti-FXa Activity Following Administration of Andexanet Alfa. Accessed October 18, 2020 at: https://www.ema.europa.eu/en/human-regulatory/post-authorisation/pharmacovigilance/direct-healthcare-professional-communications
  • 89 Barra ME, Das AS, Hayes BD. et al. Evaluation of andexanet alfa and four-factor prothrombin complex concentrate (4F-PCC) for reversal of rivaroxaban- and apixaban-associated intracranial hemorrhages. J Thromb Haemost 2020; 18 (07) 1637-1647
  • 90 Barzilai M, Kirgner I, Steimatzky A. et al. Prothrombin complex concentrate before urgent surgery in patients treated with rivaroxaban and apixaban. Acta Haematol 2020; 143 (03) 266-271
  • 91 Bavalia R, Abdoellakhan R, Brinkman HJM. et al. Emergencies on direct oral anticoagulants: management, outcomes, and laboratory effects of prothrombin complex concentrate. Res Pract Thromb Haemost 2020; 4 (04) 569-581
  • 92 Giffard-Quillon L, Desmurs-Clavel H, Grange C, Jourdy Y, Dargaud Y. Reversal of rivaroxaban anticoagulant effect by prothrombin complex concentrates: which dose is sufficient to restore normal thrombin generation?. Thromb J 2020; 18: 15
  • 93 Shaw JR, Carrier M, Dowlatshahi D. et al. Activated prothrombin complex concentrates for direct oral anticoagulant-associated bleeding or urgent surgery: hemostatic and thrombotic outcomes. Thromb Res 2020; 195: 21-28
  • 94 Lindhoff-Last E, Herrmann E, Lindau S. et al. Severe hemorrhage associated with oral anticoagulants. Dtsch Arztebl Int 2020; 117 (18) 312-319
  • 95 Hindricks G, Potpara T, Dagres N. et al; ESC Scientific Document Group. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2021; 42 (05) 373-498
  • 96 Patel JP, Byrne RA, Patel RK, Arya R. Progress in the monitoring of direct oral anticoagulant therapy. Br J Haematol 2019; 184 (06) 912-924
  • 97 Favaloro EJ, Lippi G. Recent advances in mainstream hemostasis diagnostics and coagulation testing. Semin Thromb Hemost 2019; 45 (03) 228-246
  • 98 Jigar Panchal H, Kent NJ, Knox AJS, Harris LF. Microfluidics in haemostasis: a review. Molecules 2020; 25 (04) E833
  • 99 Alouidor B, Sweeney RE, Tat T, Wong RK, Yoon JY. Microfluidic point-of-care ecarin-based clotting and chromogenic assays for monitoring direct thrombin inhibitors. J Extra Corpor Technol 2019; 51 (01) 29-37
  • 100 Frydman GH, Ellett F, Van Cott EM. et al. A new test for the detection of direct oral anticoagulants (rivaroxaban and apixaban) in the emergency room setting. Crit Care Explor 2019; 1 (08) e0024
  • 101 Ansell J, Zappe S, Jiang X. et al. A novel whole blood point-of-care coagulometer to measure the effect of direct oral anticoagulants and heparins. Semin Thromb Hemost 2019; 45 (03) 259-263
  • 102 Harder S, Santos SMD, Krozer V, Moll J. Surface acoustic wave-based microfluidic coagulation device for monitoring anticoagulant therapy. Semin Thromb Hemost 2019; 45 (03) 253-258
  • 103 Artang R, Anderson M, Nielsen JD. Fully automated thromboelastograph TEG 6s to measure anticoagulant effects of direct oral anticoagulants in healthy male volunteers. Res Pract Thromb Haemost 2019; 3 (03) 391-396
  • 104 Dias JD, Lopez-Espina CG, Ippolito J. et al. Rapid point-of-care detection and classification of direct-acting oral anticoagulants with the TEG 6s: implications for trauma and acute care surgery. J Trauma Acute Care Surg 2019; 87 (02) 364-370
  • 105 Bliden KP, Chaudhary R, Mohammed N. et al. Determination of non-Vitamin K oral anticoagulant (NOAC) effects using a new-generation thrombelastography TEG 6s system. J Thromb Thrombolysis 2017; 43 (04) 437-445
  • 106 Harenberg J, Beyer-Westendorf J, Crowther M. et al; Working Group Members. Accuracy of a rapid diagnostic test for the presence of direct oral factor Xa or thrombin inhibitors in urine: a multicenter trial. Thromb Haemost 2020; 120 (01) 132-140
  • 107 Harenberg J, Schreiner R, Hetjens S, Weiss C. Detecting anti-IIa and anti-Xa direct oral anticoagulant (DOAC) agents in urine using a DOAC dipstick. Semin Thromb Hemost 2019; 45 (03) 275-284
  • 108 Foerster KI, Huppertz A, Meid AD. et al. Dried-blood-spot technique to monitor direct oral anticoagulants: clinical validation of a UPLC-MS/MS-based assay. Anal Chem 2018; 90 (15) 9395-9402
  • 109 Protti M, Mandrioli R, Mercolini L. Tutorial: volumetric absorptive microsampling (VAMS). Anal Chim Acta 2019; 1046: 32-47
  • 110 Douxfils J, Pochet L, Lessire S. et al. Mass spectrometry in the therapeutic drug monitoring of direct oral anticoagulants. Useful or useless?. Trends Analyt Chem 2016; 84: 41-50
  • 111 Bonar R, Favaloro EJ, Mohammed S. et al. The effect of the direct factor Xa inhibitors apixaban and rivaroxaban on haemostasis tests: a comprehensive assessment using in vitro and ex vivo samples. Pathology 2016; 48 (01) 60-71
  • 112 Bonar R, Favaloro EJ, Mohammed S, Pasalic L, Sioufi J, Marsden K. The effect of dabigatran on haemostasis tests: a comprehensive assessment using in vitro and ex vivo samples. Pathology 2015; 47 (04) 355-364
  • 113 Hollestelle MJ, Meijer P. International external quality assessment for measurements of direct oral anticoagulants: results and recommendations. Br J Haematol 2020; 188 (03) 460-464
  • 114 Jennings I, Kitchen D, Kitchen S, Woods T, Walker I. The importance of commutability in material used for quality control purposes. Int J Lab Hematol 2019; 41 (01) 39-45
  • 115 Van Blerk M, Bailleul E, Chatelain B. et al. Influence of apixaban on commonly used coagulation assays: results from the Belgian National External Quality Assessment Scheme. Int J Lab Hematol 2017; 39 (04) 402-408
  • 116 Van Blerk M, Bailleul E, Chatelain B. et al. Influence of dabigatran and rivaroxaban on routine coagulation assays. A nationwide Belgian survey. Thromb Haemost 2015; 113 (01) 154-164
  • 117 Van Cott EM, Smock KJ, Chen D, Hsu P, Zantek ND, Meijer P. Testing for dabigatran and rivaroxaban by clinical laboratories. Am J Hematol 2016; 91 (11) E464-E467
  • 118 Smock KJ, Moser KA. What have we learned from coagulation laboratory participation in external quality programs?. Int J Lab Hematol 2019; 41 (Suppl. 01) 49-55
  • 119 Testa S, Legnani C, Tripodi A. et al. Poor comparability of coagulation screening test with specific measurement in patients receiving direct oral anticoagulants: results from a multicenter/multiplatform study. J Thromb Haemost 2016; 14 (11) 2194-2201
  • 120 Favaloro EJ, Gilmore G, Arunachalam S, Mohammed S, Baker R. Neutralising rivaroxaban induced interference in laboratory testing for lupus anticoagulant (LA): a comparative study using DOAC Stop and andexanet alfa. Thromb Res 2019; 180: 10-19
  • 121 Halton J, Brandão LR, Luciani M. et al; DIVERSITY Trial Investigators. Dabigatran etexilate for the treatment of acute venous thromboembolism in children (DIVERSITY): a randomised, controlled, open-label, phase 2b/3, non-inferiority trial. Lancet Haematol 2021; 8 (01) e22-e33
  • 122 Connor P, Sánchez van Kammen M, Lensing AWA. et al. Safety and efficacy of rivaroxaban in pediatric cerebral venous thrombosis (EINSTEIN-Jr CVT). Blood Adv 2020; 4 (24) 6250-6258
  • 123 Thom K, Lensing AWA, Nurmeev I. et al. Safety and efficacy of anticoagulant therapy in pediatric catheter-related venous thrombosis (EINSTEIN-Jr CVC-VTE). Blood Adv 2020; 4 (19) 4632-4639
  • 124 Janssen MD. Use of XARELTO in Pediatric Patients. 2020 . Accessed March 3, 2021 Mar at: https://www.janssenmd.com/xarelto/special-populations/pediatrics/use-of-xarelto-in-pediatric-patients
  • 125 Payne RM, Burns KM, Glatz AC. et al; Pediatric Heart Network Investigators. A multi-national trial of a direct oral anticoagulant in children with cardiac disease: design and rationale of the Safety of ApiXaban On Pediatric Heart disease On the preventioN of Embolism (SAXOPHONE) study. Am Heart J 2019; 217: 52-63
  • 126 O'Brien SH, Li D, Mitchell LG. et al. PREVAPIX-ALL: apixaban compared to standard of care for prevention of venous thrombosis in paediatric acute lymphoblastic leukaemia (ALL): rationale and design. Thromb Haemost 2019; 119 (05) 844-853
  • 127 Lippi G, Gosselin R, Favaloro EJ. Current and emerging direct oral anticoagulants: state-of-the-art. Semin Thromb Hemost 2019; 45 (05) 490-501
  • 128 European Medicines Agency. Eliquis - Summary of Product Characteristics. 2021 . Accessed February 21, 2021 at: https://www.ema.europa.eu/documents/product-information/eliquis-epar-product-information_en.pdf
  • 129 European Medicines Agency. Pradaxa: Summary of Product Characteristics. 2021 . Accessed February 21, 2021 at: https://www.ema.europa.eu/documents/product-information/pradaxa-epar-product-information_en.pdf
  • 130 European Medicines Agency. Xarelto: Summary of Product Characteristics. 2021 . Accessed February 21, 2021 at: https://www.ema.europa.eu/documents/product-information/xarelto-epar-product-information_en.pdf
  • 131 Mueck W, Stampfuss J, Kubitza D, Becka M. Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin Pharmacokinet 2014; 53 (01) 1-16
  • 132 Weitz JI, Connolly SJ, Patel I. et al. Randomised, parallel-group, multicentre, multinational phase 2 study comparing edoxaban, an oral factor Xa inhibitor, with warfarin for stroke prevention in patients with atrial fibrillation. Thromb Haemost 2010; 104 (03) 633-641
  • 133 Verhamme P, Wells PS, Segers A. et al. Dose reduction of edoxaban preserves efficacy and safety for the treatment of venous thromboembolism. An analysis of the randomised, double-blind HOKUSAI VTE trial. Thromb Haemost 2016; 116 (04) 747-753