J Reconstr Microsurg 2008; 24(6): 391-396
DOI: 10.1055/s-0028-1082028
© Thieme Medical Publishers

Evaluation of Tissue Oxygen Measurements for Flap Monitoring in an Animal Model

Christian Bonde1 , Niels-Henrik Holstein-Rathlou2 , Jens Elberg1
  • 1Department of Plastic Surgery and Treatment of Burns, Copenhagen University Hospital, Copenhagen, Denmark
  • 2Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
Further Information

Publication History

Publication Date:
01 August 2008 (online)

ABSTRACT

Tissue oxygen tension (ptiO2) measurements are common in neurosurgery but uncommon in plastic surgery. We examined this technique as a monitoring method with probe placement in the subcutaneous tissue and addressed the importance of probe placement. Myocutaneous flaps were raised in an animal model and ptiO2 measurements performed at different levels in the subcutaneous fat. Flap artery and vein were occluded until a 50% ptiO2 reduction had occurred (T1/2). We found no significant effect of depth (p > 0.10) on the level of ptiO2. T1/2 arterial was 7.2 minutes and T1/2 venous was 18 minutes. We found no significant relation between intitial levels of ptiO2 and T1/2. Location of the probe and absolute ptiO2 value is of little relevance for flap monitoring. It is the relative change in ptiO2 that is important. The ptiO2 technique is well suited for monitoring in the subcutaneous tissue and is highly sensitive to changes in both arterial and venous blood flow.

REFERENCES

  • 1 Khouri R K, Cooley B C, Kunselman A R et al.. A prospective study of microvascular free-flap surgery and outcome.  Plast Reconstr Surg. 1998;  102 711-721
  • 2 Schusterman M A, Kroll S S, Miller M J et al.. The free transverse rectus abdominis musculocutaneous flap for breast reconstruction: one center's experience with 211 consecutive cases.  Ann Plast Surg. 1994;  32 234-241
  • 3 Blondeel P N. One hundred free DIEP flap breast reconstructions: a personal experience.  Br J Plast Surg. 1999;  52 104-111
  • 4 Neligan P C. Monitoring techniques for the detection of flow failure in the postoperative period.  Microsurgery. 1993;  14 162-164
  • 5 Heller L, Levin L S, Klitzman B. Laser Doppler flowmeter monitoring of free-tissue transfers: blood flow in normal and complicated cases.  Plast Reconstr Surg. 2001;  107 1739-1745
  • 6 Salmi A, Ahovuo J, Tukiainen E, Harma M, Asko-Seljavaara S. Use of ultrasonography to evaluate muscle thickness and blood flow in free flaps.  Microsurgery. 1995;  16 601-605
  • 7 Khouri R K, Shaw W W. Monitoring of free flaps with surface-temperature recordings: is it reliable?.  Plast Reconstr Surg. 1992;  89 495-499
  • 8 Jones N F. Intraoperative and postoperative monitoring of microsurgical free tissue transfers.  Clin Plast Surg. 1992;  19 783-797
  • 9 Furnas H, Rosen J M. Monitoring in microvascular surgery.  Ann Plast Surg. 1991;  26 265-272
  • 10 Udesen A, Lontoft E, Kristensen S R. Monitoring of free TRAM flaps with microdialysis.  J Reconstr Microsurg. 2000;  16 101-106
  • 11 Jones B M. Monitors for the cutaneous microcirculation.  Plast Reconstr Surg. 1984;  73 843-850
  • 12 Hirigoyen M B, Blackwell K E, Zhang W X, Silver L, Weinberg H, Urken M L. Continuous tissue oxygen tension measurement as a monitor of free-flap viability.  Plast Reconstr Surg. 1997;  99 763-773
  • 13 Kamolz L P, Giovanoli P, Haslik W, Koller R, Frey M. Continuous free-flap monitoring with tissue-oxygen measurements: three-year experience.  J Reconstr Microsurg. 2002;  18 487-491
  • 14 Wechselberger G, Rumer A, Schoeller T, Schwabegger A, Ninkovic M, Anderl H. Free-flap monitoring with tissue-oxygen measurement.  J Reconstr Microsurg. 1997;  13 125-130
  • 15 Maas A I, Fleckenstein W, de Jong D A, van Santbrink H. Monitoring cerebral oxygenation: experimental studies and preliminary clinical results of continuous monitoring of cerebrospinal fluid and brain tissue oxygen tension.  Acta Neurochir Suppl (Wien). 1993;  59 50-57
  • 16 Manley G T, Hemphill J C, Morabito D et al.. Cerebral oxygenation during hemorrhagic shock: perils of hyperventilation and the therapeutic potential of hypoventilation.  J Trauma. 2000;  48 1025-1032
  • 17 Manley G T, Pitts L H, Morabito D et al.. Brain tissue oxygenation during hemorrhagic shock, resuscitation, and alterations in ventilation.  J Trauma. 1999;  46 261-267
  • 18 Daniel R K, Williams H B. The free transfer of skin flaps by microvascular anastomoses. An experimental study and a reappraisal.  Plast Reconstr Surg. 1973;  52 16-31
  • 19 Kerrigan C L, Zelt R G, Thomson J G, Diano E. The pig as an experimental animal in plastic surgery research for the study of skin flaps, myocutaneous flaps and fasciocutaneous flaps.  Lab Anim Sci. 1986;  36 408-412
  • 20 Horch R, Stark G B. Prosthetic vascular graft infection–defect covering with delayed vertical rectus abdominis muscular flap (VRAM) and rectus femoris flap.  Vasa. 1994;  23 52-56
  • 21 Baumgartl H, Zimelka W, Lubbers D W. Evaluation of PO(2) profiles to describe the oxygen pressure field within the tissue.  Comp Biochem Physiol A Mol Integr Physiol. 2002;  132 75-85
  • 22 Simonsen L, Enevoldsen L H, Bulow J. Determination of adipose tissue blood flow with local 133Xe clearance. Evaluation of a new labelling technique.  Clin Physiol Funct Imaging. 2003;  23 320-323
  • 23 Ardilouze J L, Karpe F, Currie J M, Frayn K N, Fielding B A. Subcutaneous adipose tissue blood flow varies between superior and inferior levels of the anterior abdominal wall.  Int J Obes Relat Metab Disord. 2004;  28 228-233
  • 24 Bulow J. Measurement of adipose tissue blood flow.  Methods Mol Biol. 2001;  155 281-293
  • 25 Goossens G H, McQuaid S E, Dennis A L et al.. Angiotensin II: a major regulator of subcutaneous adipose tissue blood flow in humans.  J Physiol. 2006;  571 451-460
  • 26 Hjortdal V E, Hauge E, Hansen E S. Differential effects of venous stasis and arterial insufficiency on tissue oxygenation in myocutaneous island flaps: an experimental study in pigs.  Plast Reconstr Surg. 1992;  89 521-529
  • 27 Mahoney J L, Lista F R. Variations in flap blood flow and tissue PO2: a new technique for monitoring flap viability.  Ann Plast Surg. 1988;  20 43-47
  • 28 Hofer S O, Timmenga E J, Christiano R, Bos K E. An intravascular oxygen tension monitoring device used in myocutaneous transplants: a preliminary report.  Microsurgery. 1993;  14 304-309

Christian BondeM.D. Ph.D. 

Department of Plastic Surgery and Treatment of Burns, Copenhagen University Hospital

Blegdamsvej 9, Copenhagen 2100, Denmark

Email: ctbonde@gmail.com

    >