Planta Med 2008; 74(13): 1635-1643
DOI: 10.1055/s-0028-1088301
Review
© Georg Thieme Verlag KG Stuttgart · New York

Biological/Chemopreventive Activity of Stilbenes and their Effect on Colon Cancer

Agnes M. Rimando1 , Nanjoo Suh2 , 3
  • 1United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, MS, USA
  • 2Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
  • 3The Cancer Institute of New Jersey, New Brunswick, NJ, USA
Further Information

Publication History

Received: May 7, 2008 Revised: July 21, 2008

Accepted: July 30, 2008

Publication Date:
08 October 2008 (online)

Abstract

Colon cancer is one of the leading causes of cancer death in men and women in Western countries. Epidemiological studies have linked the consumption of fruits and vegetables to a reduced risk of colon cancer, and small fruits are particularly rich sources of many active phytochemical stilbenes, such as resveratrol and pterostilbene. Recent advances in the prevention of colon cancer have stimulated an interest in diet and lifestyle as an effective means of intervention. As constituents of small fruits such as grapes, berries and their products, stilbenes are under intense investigation as cancer chemopreventive agents. One of the best-characterized stilbenes, resveratrol, has been known as an antioxidant and an anti-aging compound as well as an anti-inflammatory agent. Stilbenes have diverse pharmacological activities, which include cancer prevention, a cholesterol-lowering effect, enhanced insulin sensitivity, and increased lifespan. This review summarizes results related to the potential use of various stilbenes as cancer chemopreventive agents, their mechanisms of action, as well as their pharmacokinetics and efficacy for the prevention of colon cancer in animals and humans.

References

  • 1 Kelloff G J, Lippman S M, Dannenberg A J, Sigman C C. et al . Progress in chemoprevention drug development: the promise of molecular biomarkers for prevention of intraepithelial neoplasia and cancer – a plan to move forward.  Clin Cancer Res. 2006;  12 3661-97
  • 2 Khanna D, Sethi G, Ahn K S, Pandey M K, Kunnumakkara A B, Sung B. et al . Natural products as a gold mine for arthritis treatment.  Curr Opin Pharmacol. 2007;  7 344-51
  • 3 Gescher A J. Resveratrol from red grapes – pedestrian polyphenol or useful anticancer agent?. Planta Med, DOI 10.1055/s-2008-1074516
  • 4 Garodia P, Ichikawa H, Malani N, Sethi G, Aggarwal B B. From ancient medicine to modern medicine: ayurvedic concepts of health and their role in inflammation and cancer.  J Soc Integr Oncol. 2007;  5 25-37
  • 5 Langcake P, Pryce R J. A new class of phytoalexins from grapevines.  Experientia. 1977;  33 151-2
  • 6 Hart J H, Shrimpton D M. Role of stilbenes in resistance of wood to decay.  Phytopathology. 1979;  69 1138-43
  • 7 Baur J A, Pearson K J, Price N L, Jamieson H A, Lerin C, Kalra A. et al . Resveratrol improves health and survival of mice on a high-calorie diet.  Nature. 2006;  444 337-42
  • 8 Aggarwal B B, Shishodia S, Sandur S K, Pandey M K, Sethi G. Inflammation and cancer: how hot is the link?.  Biochem Pharmacol. 2006;  72 1605-21
  • 9 Aggarwal B B, Bhardwaj A, Aggarwal R S, Seeram N P, Shishodia S, Takada Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies.  Anticancer Res. 2004;  24 2783-840
  • 10 Baur J A, Sinclair D A. Therapeutic potential of resveratrol: the in vivo evidence.  Nat Rev Drug Discov. 2006;  5 493-506
  • 11 Rimando A M, Kalt W, Magee J B, Dewey J, Ballington J R. Resveratrol, pterostilbene, and piceatannol in vaccinium berries.  J Agric Food Chem. 2004;  52 4713-9
  • 12 Ingham J L. 3,5,4′-Trihydroxystilbene as a phytoalexin from groundnuts (Arachis hypogaea).  Phytochemistry. 1976;  15 1791-3
  • 13 Kimura Y, Okuda H. Resveratrol isolated from Polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice.  J Nutr. 2001;  131 1844-9
  • 14 Jordan V C. Tamoxifen (ICI46,474) as a targeted therapy to treat and prevent breast cancer.  Br J Pharmacol. 2006;  147 S269-76
  • 15 Tolomeo M, Grimaudo S, Di Cristina A, Roberti M, Pizzirani D, Meli M. et al . Pterostilbene and 3′-hydroxypterostilbene are effective apoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells.  Int J Biochem Cell Biol. 2005;  37 1709-26
  • 16 Heo Y H, Min H Y, Kim S, Lee S K. Growth inhibition and G2/M phase cell cycle arrest by 3,4,5-trimethoxy-4′-bromo-cis-stilbene in human colon cancer cells.  J Appl Pharmacol. 2007;  15 95-101
  • 17 de la Lastra C A, Villegas I. Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications.  Mol Nutr Food Res. 2005;  49 405-30
  • 18 Gatz S A, Wiesmuller L. Take a break – resveratrol in action on DNA.  Carcinogenesis. 2008;  29 321-32
  • 19 Das S, Das D K. Anti-inflammatory responses of resveratrol.  Inflamm Allergy Drug Targets. 2007;  6 168-73
  • 20 Benitez D A, Pozo-Guisado E, Clementi M, Castellon E, Fernandez-Salguero P M. Non-genomic action of resveratrol on androgen and oestrogen receptors in prostate cancer: modulation of the phosphoinositide 3-kinase pathway.  Br J Cancer. 2007;  96 1595-604
  • 21 Gusman J, Malonne H, Atassi G. A reappraisal of the potential chemopreventive and chemotherapeutic properties of resveratrol.  Carcinogenesis. 2001;  22 1111-7
  • 22 Guengerich P F, Chun Y J, Kim D, Gillam E M, Shimada T. Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies.  Mutat Res. 2003;  523 – 524 173-82
  • 23 Bhat K P, Lantvit D, Christov K, Mehta R G, Moon R C, Pezzuto J M. Estrogenic and antiestrogenic properties of resveratrol in mammary tumor models.  Cancer Res. 2001;  61 7456-63
  • 24 Gehm B D, McAndrews J M, Chien P Y, Jameson J L. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor.  Proc Natl Acad Sci U S A. 1997;  94 14 138-43
  • 25 Rimando A M, Nagmani R, Feller D R, Yokoyama W. Pterostilbene, a new agonist for the peroxisome proliferator-activated receptor alpha-isoform, lowers plasma lipoproteins and cholesterol in hypercholesterolemic hamsters.  J Agric Food Chem. 2005;  53 3403-7
  • 26 Ulrich S, Loitsch S M, Rau O, von Knethen A, Brune B, Schubert-Zsilavecz M. et al . Peroxisome proliferator-activated receptor gamma as a molecular target of resveratrol-induced modulation of polyamine metabolism.  Cancer Res. 2006;  66 7348-54
  • 27 Harikumar K B, Aggarwal B B. Resveratrol: A multitargeted agent for age-associated chronic diseases.  Cell Cycle. 2008;  7 1020-35
  • 28 Kundu J K, Shin Y K, Surh Y J. Resveratrol modulates phorbol ester-induced pro-inflammatory signal transduction pathways in mouse skin in vivo: NF-kappaB and AP-1 as prime targets.  Biochem Pharmacol. 2006;  72 1506-15
  • 29 Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F. et al . Resveratrol Improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha.  Cell. 2006;  127 1109-22
  • 30 Kim D, Nguyen M D, Dobbin M M, Fischer A, Sananbenesi F, Rodgers J T. et al . SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer′s disease and amyotrophic lateral sclerosis.  Embo J. 2007;  26 3169-79
  • 31 Hayashibara T, Yamada Y, Nakayama S, Harasawa H, Tsuruda K, Sugahara K. et al . Resveratrol induces downregulation in survivin expression and apoptosis in HTLV-1-infected cell lines: a prospective agent for adult T cell leukemia chemotherapy.  Nutr Cancer. 2002;  44 193-201
  • 32 Shankar S, Singh G, Srivastava R K. Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential.  Front Biosci. 2007;  12 4839-54
  • 33 Lee S C, Chan J, Clement M V, Pervaiz S. Functional proteomics of resveratrol-induced colon cancer cell apoptosis: caspase-6-mediated cleavage of lamin A is a major signaling loop.  Proteomics. 2006;  6 2386-94
  • 34 Delmas D, Rebe C, Lacour S, Filomenko R, Athias A, Gambert P. et al . Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells.  J Biol Chem. 2003;  278 41 482-90
  • 35 Su J L, Lin M T, Hong C C, Chang C C, Shiah S G, Wu C W. et al . Resveratrol induces FasL-related apoptosis through Cdc42 activation of ASK1/JNK-dependent signaling pathway in human leukemia HL-60 cells.  Carcinogenesis. 2005;  26 1-10
  • 36 Tsan M F, White J E, Maheshwari J G, Bremner T A, Sacco J. Resveratrol induces Fas signalling-independent apoptosis in THP-1 human monocytic leukaemia cells.  Br J Haematol. 2000;  109 405-12
  • 37 Bernhard D, Tinhofer I, Tonko M, Hubl H, Ausserlechner M J, Greil R. et al . Resveratrol causes arrest in the S-phase prior to Fas-independent apoptosis in CEM-C7H2 acute leukemia cells.  Cell Death Differ. 2000;  7 834-42
  • 38 Fulda S, Debatin K M. Resveratrol-mediated sensitisation to TRAIL-induced apoptosis depends on death receptor and mitochondrial signalling.  Eur J Cancer. 2005;  41 786-98
  • 39 Clement M V, Hirpara J L, Chawdhury S H, Pervaiz S. Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells.  Blood. 1998;  92 996-1002
  • 40 Wang Y, Wang B, Cheng J, Yang L, Liu Z L, Balan K. et al . FADD-dependent apoptosis induction in Jurkat leukemia T-cells by the resveratrol analogue, 3,4,5-trihydroxy-trans-stilbene.  Biochem Pharmacol. 2005;  69 249-54
  • 41 Kundu J K, Chun K S, Kim S O, Surh Y J. Resveratrol inhibits phorbol ester-induced cyclooxygenase-2 expression in mouse skin: MAPKs and AP-1 as potential molecular targets.  Biofactors. 2004;  21 33-9
  • 42 Aggarwal B B, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer.  Biochem Pharmacol. 2006;  71 1397-421
  • 43 Yu R, Hebbar V, Kim D W, Mandlekar S, Pezzuto J M, Kong A N. Resveratrol inhibits phorbol ester and UV-induced activator protein 1 activation by interfering with mitogen-activated protein kinase pathways.  Mol Pharmacol. 2001;  60 217-24
  • 44 Frojdo S, Cozzone D, Vidal H, Pirola L. Resveratrol is a class IA phosphoinositide 3-kinase inhibitor.  Biochem J. 2007;  406 511-8
  • 45 Pozo-Guisado E, Lorenzo-Benayas M J, Fernandez-Salguero P M. Resveratrol modulates the phosphoinositide 3-kinase pathway through an estrogen receptor alpha-dependent mechanism: relevance in cell proliferation.  Int J Cancer. 2004;  109 167-73
  • 46 Inoue H, Jiang X F, Katayama T, Osada S, Umesono K, Namura S. Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferator-activated receptor alpha in mice.  Neurosci Lett. 2003;  352 203-6
  • 47 Bowers J L, Tyulmenkov V V, Jernigan S C, Klinge C M. Resveratrol acts as a mixed agonist/antagonist for estrogen receptors alpha and beta.  Endocrinology. 2000;  141 3657-67
  • 48 Mueller S O, Simon S, Chae K, Metzler M, Korach K S. Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor alpha (ERalpha) and ERbeta in human cells.  Toxicol Sci. 2004;  80 14-25
  • 49 Wada-Hiraike O, Warner M, Gustafsson J A. New developments in oestrogen signalling in colonic epithelium.  Biochem Soc Trans. 2006;  34 1114-6
  • 50 Kundu J K, Shin Y K, Kim S H, Surh Y J. Resveratrol inhibits phorbol ester-induced expression of COX-2 and activation of NF-kappaB in mouse skin by blocking IkappaB kinase activity.  Carcinogenesis. 2006;  27 1465-74
  • 51 Suh N, Paul S, Hao X, Simi B, Xiao H, Rimando A M. et al . Pterostilbene, an active constituent of blueberries, suppresses aberrant crypt foci formation in the azoxymethane-induced colon carcinogenesis model in rats.  Clin Cancer Res. 2007;  13 350-5
  • 52 Hougee S, Faber J, Sanders A, de Jong R B, van den Berg W B, Garssen J. et al . Selective COX-2 inhibition by a Pterocarpus marsupium extract characterized by pterostilbene, and its activity in healthy human volunteers.  Planta Med. 2005;  71 387-92
  • 53 Subbaramaiah K, Dannenberg A J. Resveratrol inhibits the expression of cyclooxygenase-2 in mammary epithelial cells.  Adv Exp Med Biol. 2001;  492 147-57
  • 54 Subbaramaiah K, Chung W J, Michaluart P, Telang N, Tanabe T, Inoue H. et al . Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells.  J Biol Chem. 1998;  273 21 875-82
  • 55 Das S, Fraga C G, Das D K. Cardioprotective effect of resveratrol via HO-1 expression involves p38 map kinase and PI-3-kinase signaling, but does not involve NFkappaB.  Free Radic Res. 2006;  40 1066-75
  • 56 Chun Y J, Kim M Y, Guengerich F P. Resveratrol is a selective human cytochrome P450 1A1 inhibitor.  Biochem Biophys Res Commun. 1999;  262 20-4
  • 57 Mikstacka R, Rimando A M, Szalaty K, Stasik K, Baer-Dubowska W. Effect of natural analogues of trans-resveratrol on cytochromes P4501A2 and 2E1 catalytic activities.  Xenobiotica. 2006;  36 269-85
  • 58 Mikstacka R, Przybylska D, Rimando A M, Baer-Dubowska W. Inhibition of human recombinant cytochromes P450 CYP1A1 and CYP1B1 by trans-resveratrol methyl ethers.  Mol Nutr Food Res. 2007;  51 517-24
  • 59 Belleri M, Ribatti D, Nicoli S, Cotelli F, Forti L, Vannini V. et al . Antiangiogenic and vascular-targeting activity of the microtubule-destabilizing trans-resveratrol derivative 3,5,4′-trimethoxystilbene.  Mol Pharmacol. 2005;  67 1451-9
  • 60 Banerjee S, Bueso-Ramos C, Aggarwal B B. Suppression of 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9.  Cancer Res. 2002;  62 4945-54
  • 61 Oak M H, El Bedoui J, Schini-Kerth V B. Antiangiogenic properties of natural polyphenols from red wine and green tea.  J Nutr Biochem. 2005;  16 1-8
  • 62 Chen Y, Tseng S H. Review. Pro- and anti-angiogenesis effects of resveratrol.  In Vivo. 2007;  21 365-70
  • 63 Howitz K T, Bitterman K J, Cohen H Y, Lamming D W, Lavu S, Wood J G. et al . Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan.  Nature. 2003;  425 191-6
  • 64 Walle T, Hsieh F, DeLegge M H, Oatis JE J r, Walle U K. High absorption but very low bioavailability of oral resveratrol in humans.  Drug Metab Dispos. 2004;  32 1377-82
  • 65 Goldberg D M, Yan J, Soleas G J. Absorption of three wine-related polyphenols in three different matrices by healthy subjects.  Clin Biochem. 2003;  36 79-87
  • 66 Yu C, Shin Y G, Chow A, Li Y, Kosmeder J W, Lee Y S. et al . Human, rat, and mouse metabolism of resveratrol.  Pharm Res. 2002;  19 1907-14
  • 67 Remsberg C M, Yanez J A, Ohgami Y, Vega-Villa K R, Rimando A M, Davies N M. Pharmacometrics of pterostilbene: preclinical pharmacokinetics and metabolism, anticancer, anti-inflammatory, antioxidant and analgesic activity.  Phytother Res. 2008;  22 169-79
  • 68 Roupe K A, Yanez J A, Teng X W, Davies N M. Pharmacokinetics of selected stilbenes: rhapontigenin, piceatannol and pinosylvin in rats.  J Pharm Pharmacol. 2006;  58 1443-50
  • 69 Marier J F, Vachon P, Gritsas A, Zhang J, Moreau J P, Ducharme M P. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model.  J Pharmacol Exp Ther. 2002;  302 369-73
  • 70 Aziz M H, Afaq F, Ahmad N. Prevention of ultraviolet-B radiation damage by resveratrol in mouse skin is mediated via modulation in survivin.  Photochem Photobiol. 2005;  81 25-31
  • 71 Afaq F, Adhami V M, Ahmad N. Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice.  Toxicol Appl Pharmacol. 2003;  186 28-37
  • 72 Kapadia G J, Azuine M A, Tokuda H, Takasaki M, Mukainaka T, Konoshima T. et al . Chemopreventive effect of resveratrol, sesamol, sesame oil and sunflower oil in the Epstein-Barr virus early antigen activation assay and the mouse skin two-stage carcinogenesis.  Pharmacol Res. 2002;  45 499-505
  • 73 Li Z G, Hong T, Shimada Y, Komoto I, Kawabe A, Ding Y. et al . Suppression of N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumorigenesis in F344 rats by resveratrol.  Carcinogenesis. 2002;  23 1531-6
  • 74 Provinciali M, Re F, Donnini A, Orlando F, Bartozzi B, Di Stasio G. et al . Effect of resveratrol on the development of spontaneous mammary tumors in HER-2/neu transgenic mice.  Int J Cancer. 2005;  115 36-45
  • 75 Whitsett T, Carpenter M, Lamartiniere C A. Resveratrol, but not EGCG, in the diet suppresses DMBA-induced mammary cancer in rats.  J Carcinog. 2006;  5 15
  • 76 Coussens L M, Werb Z. Inflammation and cancer.  Nature. 2002;  420 860-7
  • 77 Ulrich C M, Bigler J, Potter J D. Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics.  Nat Rev Cancer. 2006;  6 130-40
  • 78 Ohta T, Takahashi M, Ochiai A. Increased protein expression of both inducible nitric oxide synthase and cyclooxygenase-2 in human colon cancers.  Cancer Lett. 2006;  239 246-53
  • 79 Cianchi F, Cortesini C, Fantappie O, Messerini L, Schiavone N, Vannacci A. et al . Inducible nitric oxide synthase expression in human colorectal cancer: correlation with tumor angiogenesis.  Am J Pathol. 2003;  162 793-801
  • 80 Rao C V, Kawamori T, Hamid R, Reddy B S. Chemoprevention of colonic aberrant crypt foci by an inducible nitric oxide synthase-selective inhibitor.  Carcinogenesis. 1999;  20 641-4
  • 81 Takahashi M, Mutoh M, Shoji Y, Sato H, Kamanaka Y, Naka M. et al . Suppressive effect of an inducible nitric oxide inhibitor, ONO-1714, on AOM-induced rat colon carcinogenesis.  Nitric Oxide. 2006;  14 130-6
  • 82 Rao C V, Indranie C, Simi B, Manning P T, Connor J R, Reddy B S. Chemopreventive properties of a selective inducible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase-2 inhibitor.  Cancer Res. 2002;  62 165-70
  • 83 Tessitore L, Davit A, Sarotto I, Caderni G. Resveratrol depresses the growth of colorectal aberrant crypt foci by affecting bax and p21(CIP) expression.  Carcinogenesis. 2000;  21 1619-22
  • 84 Sengottuvelan M, Viswanathan P, Nalini N. Chemopreventive effect of trans-resveratrol – a phytoalexin against colonic aberrant crypt foci and cell proliferation in 1,2-dimethylhydrazine induced colon carcinogenesis.  Carcinogenesis. 2006;  27 1038-46
  • 85 Corpet D E, Pierre F. Point: From animal models to prevention of colon cancer. Systematic review of chemoprevention in min mice and choice of the model system.  Cancer Epidemiol Biomarkers Prev. 2003;  12 391-400
  • 86 Schneider Y, Duranton B, Gosse F, Schleiffer R, Seiler N, Raul F. Resveratrol inhibits intestinal tumorigenesis and modulates host-defense-related gene expression in an animal model of human familial adenomatous polyposis.  Nutr Cancer. 2001;  39 102-7
  • 87 Ziegler C C, Rainwater L, Whelan J, McEntee M F. Dietary resveratrol does not affect intestinal tumorigenesis in Apc(Min/+) mice.  J Nutr. 2004;  134 5-10
  • 88 Sale S, Tunstall R G, Ruparelia K C, Potter G A, Steward W P, Gescher A J. Comparison of the effects of the chemopreventive agent resveratrol and its synthetic analog trans-3,4,5,4′-tetramethoxystilbene (DMU-212) on adenoma development in the Apc(Min+) mouse and cyclooxygenase-2 in human-derived colon cancer cells.  Int J Cancer. 2005;  115 194-201
  • 89 Kineman B D, Au A, Paiva N L, Kaiser M S, Brummer E C, Birt D F. Transgenic alfalfa that accumulates piceid (trans-resveratrol-3-O-beta-D-glucopyranoside) requires the presence of beta-glucosidase to inhibit the formation of aberrant crypt foci in the colon of CF-1 mice.  Nutr Cancer. 2007;  58 66-74
  • 90 Jang M, Cai L, Udeani G O, Slowing K V, Thomas C F, Beecher C W. et al . Cancer chemopreventive activity of resveratrol, a natural product derived from grapes.  Science. 1997;  275 218-20
  • 91 Zern T L, Wood R J, Greene C, West K L, Liu Y, Aggarwal D. et al . Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress.  J Nutr. 2005;  135 1911-7
  • 92 Levi F, Pasche C, Lucchini F, Ghidoni R, Ferraroni M, La Vecchia C. Resveratrol and breast cancer risk.  Eur J Cancer Prev. 2005;  14 139-42
  • 93 Boocock D J, Faust G E, Patel K R, Schinas A M, Brown V A, Ducharme M P. et al . Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent.  Cancer Epidemiol Biomarkers Prev. 2007;  16 1246-52
  • 94 Manners G D, Swan E P. Stilbenes in the barks of five Canadian Picea species.  Phytochemistry. 1971;  10 607-10
  • 95 Waffo-Teguo P, Hawthorne M E, Cuendet M, Merillon J M, Kinghorn A D, Pezzuto J M. et al . Potential cancer-chemopreventive activities of wine stilbenoids and flavans extracted from grape (Vitis vinifera) cell cultures.  Nutr Cancer. 2001;  40 173-9
  • 96 Wober J, Moller F, Richter T, Unger C, Weigt C, Jandausch A. et al . Activation of estrogen receptor-beta by a special extract of Rheum rhaponticum (ERr 731), its aglycones and structurally related compounds.  J Steroid Biochem Mol Biol. 2007;  107 191-201
  • 97 Ko S K. Effects of stilbene derivatives from Rheum undulatum on 5a-reductase activity.  Saengyak Hakhoechi. 2000;  31 245-8
  • 98 Ryu S Y, Choi S U, Lee C O, Lee S H, Ahn J W, Zee O P. Antitumor activity of some phenolic components in plants.  Arch Pharm Res. 1994;  17 42-4
  • 99 Mellanen P, Petanen T, Lehtimaki J, Makela S, Bylund G, Holmbom B. et al . Wood-derived estrogens: studies in vitro with breast cancer cell lines and in vivo in trout.  Toxicol Appl Pharmacol. 1996;  136 381-8
  • 100 Deshpande V H, Srinivasan R, Rao A VR. Wood phenolics of Morus species. IV. Phenolics of the heartwood of five Morus species.  Indian J Chem. 1975;  13 453-7
  • 101 Lee S K, Nam K A, Hoe Y H, Min H Y, Kim E Y, Ko H. et al . Synthesis and evaluation of cytotoxicity of stilbene analogues.  Arch Pharm Res. 2003;  26 253-7
  • 102 Kim Y H, Park C, Lee J O, Kim G Y, Lee W H, Choi Y H. et al . Induction of apoptosis by piceatannol in human leukemic U937 cells through down-regulation of Bcl-2 and activation of caspases.  Oncol Rep. 2008;  19 961-7
  • 103 Kuo P L, Hsu Y L. The grape and wine constituent piceatannol inhibits proliferation of human bladder cancer cells via blocking cell cycle progression and inducing Fas/membrane bound Fas ligand-mediated apoptotic pathway.  Mol Nutr Food Res. 2008;  52 408-18
  • 104 Waterhouse A L, Lamuela-Raventos R M. The occurrence of piceid, a stilbene glucoside, in grape berries.  Phytochemistry. 1994;  37 571-3
  • 105 Tyukavkina N A, Gromova A S, Lutskii V I, Voronov V K. Hydroxystilbenes from Pinus sibirica bark.  Khimiya Prirodnykh Soedinenii. 1972;  5 600-3
  • 106 Gromova A S, Lutskii V I, Tyukavkina N A. Stilbenes from the bark of some Pinaceae species.  Koksnes Kimija. 1979;  3 103-9
  • 107 Clausen T P, Reichardt P B, Bryant J P. Pinosylvin and pinosylvin methyl ether as feeding deterrents in green alder.  J Chem Ecol. 1986;  12 2117-31
  • 108 Jorgensen E. The formation of pinosylvin and its monomethyl ether in the sapwood of Pinus resinosa. .  Can J Bot. 1961;  39 1765-72
  • 109 Skinnider L, Stoessl A. The effect of the phytoalexins, lubimin, (−)-maackiain, pinosylvin, and the related compounds dehydroloroglossol and hordatine M on human lymphoblastoid cell lines.  Experientia. 1986;  42 568-70
  • 110 Pezet R, Pont V. Demonstration of pterostilbene in clusters of Vitis vinifera. .  Plant Physiol Biochem. 1988;  26 603-7
  • 111 Maurya R, Ray A B, Duah F K, Slatkin D J, Schiff PL J r. Constituents of Pterocarpus marsupium. .  J Nat Prod. 1984;  47 179-81
  • 112 MacRae W D, Towers G HN. Nonalkaloidal constituents of Virola elongata bark.  Phytochemistry. 1985;  24 561-6
  • 113 Cardile V, Chillemi R, Lombardo L, Sciuto S, Spatafora C, Tringali C. Antiproliferative activity of methylated analogues of E- and Z-resveratrol.  Z Naturforsch [C]. 2007;  62 189-95
  • 114 Murakami T, Tanaka K. New phenolic glycosides in Rhei palmati rhizomes.  Tetrahedron Lett. 1972;  29 2965-8
  • 115 Ferrer P, Asensi M, Segarra R, Ortega A, Benlloch M, Obrador E. et al . Association between pterostilbene and quercetin inhibits metastatic activity of B16 melanoma.  Neoplasia. 2005;  7 37-47
  • 116 Asensi M, Medina I, Ortega A, Carretero J, Bano M C, Obrador E. et al . Inhibition of cancer growth by resveratrol is related to its low bioavailability.  Free Radic Biol Med. 2002;  33 387-98
  • 117 Sengottuvelan M, Nalini N. Dietary supplementation of resveratrol suppresses colonic tumour incidence in 1,2-dimethylhydrazine-treated rats by modulating biotransforming enzymes and aberrant crypt foci development.  Br J Nutr. 2006;  96 145-53
  • 118 Pan M H, Gao J H, Lai C S, Wang Y J, Chen W M, Lo C Y. et al . Antitumor activity of 3,5,4′-trimethoxystilbene in COLO 205 cells and xenografts in SCID mice.  Mol Carcinogen. 2008;  47 184-96
  • 119 Martin A R, Villegas I, Sanchez-Hidalgo M, de la Lastra C A. The effects of resveratrol, a phytoalexin derived from red wines, on chronic inflammation induced in an experimentally induced colitis model.  Br J Pharmacol. 2006;  147 873-85

Prof. Nanjoo Suh

Department of Chemical Biology

Ernest Mario School of Pharmacy

Rutgers, The State University of New Jersey

164 Frelinghuysen Road

Piscataway

NJ 08854

USA

Phone: +1-732-445-3400 (x226)

Fax: +1-732-445-0687

Email: nsuh@rci.rutgers.edu

    >