Int J Sports Med 2009; 30(3): 157-162
DOI: 10.1055/s-0028-1104569
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

On the Determination of Ventilatory Threshold and Respiratory Compensation Point via Respiratory Frequency

D. T. Cannon 1 , F. W. Kolkhorst 1 , M. J. Buono 1 , 2
  • 1School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
  • 2Department of Biology, San Diego State University, San Diego, CA, United States
Further Information

Publication History

accepted after revision August 4, 2008

Publication Date:
07 January 2009 (online)

Abstract

This study examined the validity of a quantitative respiratory frequency (f R) analysis to detect the ventilatory threshold (ΘVent) and respiratory compensation point (RCP). Thirty-six amateur competitive cyclists completed a maximal graded exercise test on an electromagnetically-braked cycle ergometer. ΘVent and RCP were determined using multiple gas exchange criteria and by f R analysis (ΘVent f R and RCPf R), employing an iterative least-squares linear regression technique. Fifteen subjects were excluded from the analyses due to a low signal-to-noise ratio and/or high risk for pseudo-threshold resulting from hyperventilation early in the exercise protocol. A Bland-Altman procedure for inter-analysis comparison completed on the remaining participants’ data (n=21; age=29±7 years; height=177±9 cm; weight=76.0±15.8 kg; V˙O2max=4.415±0.971 l min−1; 58.7±10.7 ml kg−1 min−1) revealed mean bias±95% Limits of Agreement (LOA) of 1.53±50.2 W for ΘVent and ΘVent f R. The same inter-anlysis comparison (n=21) for RCP and RCPf R resulted in a mean bias±LOA of 12.6±26.9 W. The analysis techniques in the present investigation revealed substantial limits of agreement and/or bias for all estimations, and these data indicated f R analyses were unsatisfactory to determine ΘVent and RCP in trained cyclists.

References

  • 1 Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange.  J Appl Physiol. 1986;  60 2020-2027
  • 2 Bhambhani YN, Buckley SM, Susaki T. Detection of ventilatory threshold using near infrared spectroscopy in men and women.  Med Sci Sports Exerc. 1997;  29 402-409
  • 3 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement.  Lancet. 1986;  1 307-310
  • 4 Bonsignore MR, Morici G, Abate P, Romano S, Bonsignore G. Ventilation and entrainment of breathing during cycling and running in triathletes.  Med Sci Sports Exerc. 1998;  30 239-245
  • 5 Cheng B, Kuipers H, Snyder AC, Keizer HA, Jeukendrup A, Hesselink M. A new approach for the determination of ventilatory and lactate thresholds.  Int J Sports Med. 1992;  13 518-522
  • 6 Coats EM, Rossiter HB, Day JR, Miura A, Fukuba Y, Whipp BJ. Intensity-dependent tolerance to exercise after attaining V(O2) max in humans.  J Appl Physiol. 2003;  95 483-490
  • 7 Conconi F, Ferrari M, Ziglio PG, Droghetti P, Codeca L. Determination of the anaerobic threshold by a noninvasive field test in runners.  J Appl Physiol. 1982;  52 869-873
  • 8 Cottin F, Medigue C, Lopes P, Lepretre PM, Heubert R, Billat V. Ventilatory thresholds assessment from heart rate variability during an incremental exhaustive running test.  Int J Sports Med. 2007;  28 287-294
  • 9 Farrell PA, Wilmore JH, Coyle EF, Billing JE, Costill DL. Plasma lactate accumulation and distance running performance.  Med Sci Sports. 1979;  11 338-344
  • 10 Garlando F, Kohl J, Koller EA, Pietsch P. Effect of coupling the breathing- and cycling rhythms on oxygen uptake during bicycle ergometry.  Eur J Appl Physiol. 1985;  54 497-501
  • 11 Grassi B, Quaresima V, Marconi C, Ferrari M, Cerretelli P. Blood lactate accumulation and muscle deoxygenation during incremental exercise.  J Appl Physiol. 1999;  87 348-355
  • 12 Green HJ, Hughson RL, Orr GW, Ranney DA. Anaerobic threshold, blood lactate, and muscle metabolites in progressive exercise.  J Appl Physiol. 1983;  54 1032-1038
  • 13 Haouzi P. Counterpoint: supraspinal locomotor centers do not contribute significantly to the hyperpnea of dynamic exercise.  J Appl Physiol. 2006;  100 1079-1082
  • 14 James NW, Adams GM, Wilson AF. Determination of anaerobic threshold by ventilatory frequency.  Int J Sports Med. 1989;  10 192-196
  • 15 Jones AM, Doust JH. Assessment of the lactate and ventilatory thresholds by breathing frequency in runners.  J Sports Sci. 1998;  16 667-675
  • 16 Kohl J, Koller EA, Brandenberger M, Cardenas M, Boutellier U. Effect of exercise-induced hyperventilation on airway resistance and cycling endurance.  Eur J Appl Physiol. 1997;  75 305-311
  • 17 Lucia A, Vaquero AF, Perez M, Sanchez O, Sanchez V, Gomez MA, Chicharro JL. Electromyographic response to exercise in cardiac transplant patients: a new method for anaerobic threshold determination?.  Chest. 1997;  111 1571-1576
  • 18 Meyer T, Lucia A, Earnest CP, Kindermann W. A conceptual framework for performance diagnosis and training prescription from submaximal gas exchange parameters–theory and application.  Int J Sports Med. 2005;  26 ((Suppl. 1)) S38-S48
  • 19 Nabetani T, Ueda T, Teramoto K. Measurement of ventilatory threshold by respiratory frequency.  Percept Mot Skills. 2002;  94 851-859
  • 20 Neder JA, Stein R. A simplified strategy for the estimation of the exercise ventilatory thresholds.  Med Sci Sports Exerc. 2006;  38 1007-1013
  • 21 Omiya K, Itoh H, Harada N, Maeda T, Tajima A, Oikawa K, Koike A, Aizawa T, Fu LT, Osada N. Relationship between double product break point, lactate threshold, and ventilatory threshold in cardiac patients.  Eur J Appl Physiol. 2004;  91 224-229
  • 22 Ozcelik O, Ward SA, Whipp BJ. Effect of altered body CO2 stores on pulmonary gas exchange dynamics during incremental exercise in humans.  Exp Physiol. 1999;  84 999-1011
  • 23 Phan CQ, Tremper KK, Lee SE, Barker SJ. Noninvasive monitoring of carbon dioxide: a comparison of the partial pressure of transcutaneous and end-tidal carbon dioxide with the partial pressure of arterial carbon dioxide.  J Clin Monit. 1987;  3 149-154
  • 24 Powers S, Dodd S, Deason R, Bird R, MacKnight T. Ventilatory threshold, running economy and distance running performance of trained athletes.  Res Quart Exerc Sport. 1983;  54 179-182
  • 25 Scheuermann BW, Kowalchuk JM. Breathing patterns during slow and fast ramp exercise in man.  Exp Physiol. 1999;  84 109-120
  • 26 Sporer BC, Foster GE, Sheel AW, MacKenzie DC. Entrainment of breathing in cyclists and non-cyclists during arm and leg exercise.  Respir Physiol Neurobiol. 2007;  155 64-70
  • 27 Takano N. Respiratory compensation point during incremental exercise as related to hypoxic ventilatory chemosensitivity and lactate increase in man.  Jpn J Physiol. 2000;  50 449-455
  • 28 Waldrop TG, Iwamoto GA. Point: supraspinal locomotor centers do contribute significantly to the hyperpnea of dynamic exercise.  J Appl Physiol. 2006;  100 1077-1079
  • 29 Wasserman K. Breathing during exercise.  N Engl J Med. 1978;  298 780-785
  • 30 Wasserman K. The anaerobic threshold measurement to evaluate exercise performance.  Am Rev Respir Dis. 1984;  129 S35-40
  • 31 Wasserman K, Whipp BJ, Koyl SN, Beaver WL. Anaerobic threshold and respiratory gas exchange during exercise.  J Appl Physiol. 1973;  35 236-243
  • 32 Whipp BJ. Physiological mechanisms dissociating pulmonary CO2 and O2 exchange dynamics during exercise in humans.  Exp Physiol. 2007;  92 347-355
  • 33 Yoshida T, Suda Y, Takeuchi N. Endurance training regimen based upon arterial blood lactate: effects on anaerobic threshold.  Eur J Appl Physiol. 1982;  49 223-230

Correspondence

D. T. Cannon

Institute of Membrane and Systems Biology

Faculty of Biological Sciences

9.52 Worsley Building

University of Leeds

LS2 9JT

United Kingdom

Phone: +44(0)/113/343 16 69

Email: d.t.cannon08@leeds.ac.uk

    >