Ultraschall Med 2009; 30(5): 471-477
DOI: 10.1055/s-0028-1109572
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

In-vivo Examples of Flow Patterns With The Fast Vector Velocity Ultrasound Method

Fallbeschreibung: Beispiele für die Bestimmung von In-vivo-Strömungsmustern mithilfe der Flussgeschwindigkeitsvektor-SonografieK. L. Hansen1 , J. Udesen2 , F. Gran2 , J. A. Jensen3 , M. Bachmann Nielsen4
  • 1Department of Radiology, University Hospital of Copenhagen
  • 2Medical Devices, GN Resound
  • 3Center for Fast Ultrasound Imaging, Technical University of Denmark
  • 4Dep. Of Radiology, Rigshospitalet
Further Information

Publication History

received: 8.12.2008

accepted: 18.5.2009

Publication Date:
17 September 2009 (online)

Zusammenfassung

Ziel: Die herkömmlichen Ultraschallverfahren zur Erfassung von Color-Flow-Bildern der Blutströmung sind durch eine relativ geringe Vollbildübertragungsrate begrenzt und beschränken sich auf die Schätzung von Geschwindigkeiten entlang eines Schallstrahls. Als Ansatz zur Umgehung dieser Einschränkungen wurde die Plane-Wave-Excitation-Methode (PWE-Methode) vorgeschlagen. Material und Methoden: Mithilfe der PWE-Methode kann die 2-D-Vektorgeschwindigkeit des Blutes mit einer hohen Vollbildübertragungsrate bestimmt werden. Die Schätzung der Vektorgeschwindigkeiten erfolgt folgender Maßen: Der Ultraschall wird während der Schallübertragung nicht gebündelt, wodurch ein Speckle-Vollbild des Blutes für jede gepulste Emission erhalten wird. Der Puls ist ein 13-bit-Barker-Code, der zeitgleich von jeder Transducer-Einheit übertragen wird. Die 2-D-Vektorgeschwindigkeit des Blutes wird durch die Aufarbeitungung des 2-D-Speckle-Nachlaufs zwischen den Segmenten aufeinander folgender Speckle-Bilder bestimmt. Dieses Prinzip wurde bei einem experimentellen RASMUS-Scanner mit einem 100-CPU-Linux-Cluster für die Nacharbeitung angewendet. Bei der PWE-Methode kann somit ein Vollbild von 100 Hz erlangt werden, bei dem eine Vektorgeschwindigkeitssequenz von ca. 3 s 10 h zur Speicherung und 48 h zur Nacharbeitung benötigt wird. In diesem Beitrag wird eine Fallstudie über die Schätzung der Vektorgeschwindigkeit in verschiedenen komplexen In-vivo-Gefäßstrukturen beschrieben. Ergebnisse: Die Flussmuster von 6 Bifurkationen und 2 Venen wurden untersucht. Nachgewiesen wurde Folgendes: 1. Ein stabiler Wirbel ist im Bulbus carotis im Gegensatz zu den anderen untersuchten Gefäßen immer anwesend. 2. Ein retrograder Fluss konnte im R. superficialis der A. femoralis während der Diastole nachgewiesen werden. 3. In der A. subclavia konnte ein retrograder Fluss, in der A. carotis communis konnte ein anterograder Fluss in der Diastole festgestellt werden. 4. Wirbel wurden in den Sinustaschen hinter den venösen Klappen bei anterogradem sowie bei retrogradem Fluss erzeugt. 5. Sekundärer Fluss konnte in den verschiedenen Gefäßen nachgewiesen werden. Schlussfolgerung: Durch die Anwendung der schnellen Vektorgeschwindigkeitsmethode können In-vivo-Aufnahmen erstellt werden, die komplexe Flussmuster mit einer größeren Genauigkeit darstellen, welche mit den herkömmlichen Color-Flow-Methoden bisher nicht möglich gewesen ist.

Abstract

Purpose: Conventional ultrasound methods for acquiring color flow images of the blood motion are limited by a relatively low frame rate and are restricted to only giving velocity estimates along the ultrasound beam direction. To circumvent these limitations, the Plane Wave Excitation (PWE) method has been proposed. Material and Methods: The PWE method can estimate the 2D vector velocity of the blood with a high frame rate. Vector velocity estimates are acquired by using the following approach: The ultrasound is not focused during the ultrasound transmission, and a full speckle image of the blood can be acquired for each pulse emission. The pulse is a 13 bit Barker code transmitted simultaneously from each transducer element. The 2D vector velocity of the blood is found using 2D speckle tracking between segments in consecutive speckle images. Implemented on the experimental scanner RASMUS and using a 100 CPU linux cluster for post processing, PWE can achieve a frame of 100 Hz where one vector velocity sequence of approximately 3 sec, takes 10 h to store and 48 h to process. In this paper a case study is presented of in-vivo vector velocity estimates in different complex vessel geometries. Results: The flow patterns of six bifurcations and two veins were investigated. It was shown: 1. that a stable vortex in the carotid bulb was present opposed to other examined bifurcations, 2. that retrograde flow was present in the superficial branch of the femoral artery during diastole, 3. that retrograde flow was present in the subclavian artery and antegrade in the common carotid artery during diastole, 4. that vortices were formed in the sinus pockets behind the venous valves in both antegrade and retrograde flow, and 5. that secondary flow was present in various vessels. Conclusion: Using a fast vector velocity ultrasound method, in-vivo scans have been recorded where complex flow patterns were visualized in greater detail than previously visualized by conventional color flow imaging techniques.

References

  • 1 Ferrara K, DeAngelis G. Color flow mapping.  Ultrasound Med Biol. 1997;  23 321-345
  • 2 Kruskal J B, Newman P A, Sammons L G. et al . Optimizing Doppler and color flow US: Application to hepatic sonography.  Radiographics. 2004;  24 657-675
  • 3 Jensen J A. Estimation of Blood velocities using ultrasound: A signal processing approach. New York; Cambridge University Press 1996
  • 4 Tortoli P, Michelassi V, Bambi G. et al . Interaction between secondary velocities, flow pulsation and vessel morphology in the common carotid artery.  Ultrasound Med Biol. 2003;  29 407-415
  • 5 Ford M D, Xie Y J, Wasserman B A. et al . Is flow in the common carotid artery fully developed?.  Physiol Meas. 2008;  29 1335-1349
  • 6 Hansen K L, Udesen J, Thomsen C. et al . In vivo validation of a blood vector velocity estimator with MR angiography.  IEEE Trans Ultrason Ferroelectr Freq Control. 2009;  56 91-100
  • 7 Frazin L J, Lanza G, Vonesh M. et al . Functional chiral asymmetry in descending thoracic aorta.  Circulation. 1990;  82 1985-1994
  • 8 Lee K L, Doorly D J, Firmin D N. Numerical simulations of phase contrast velocity mapping of complex flows in an anatomically realistic bypass graft geometry.  Med Phys. 2006;  33 2621-2631
  • 9 Steinman D A, Thomas J B, Ladak H M. et al . Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI.  Magnet Reson Med. 2002;  47 149-159
  • 10 Zhao S Z, Xu X Y, Hughes A D. et al . Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation.  J Biomech. 2000;  33 975-984
  • 11 Zhao S Z, Papathanasopoulou P, Long Q. et al . Comparative study of magnetic resonance imaging and image-based computational fluid dynamics for quantification of pulsatile flow in a carotid bifurcation phantom.  Ann Biomed Eng. 2003;  31 962-971
  • 12 Phillips D J, Beach K W, Primozich J. et al . Should results of ultrasound Doppler studies be reported in units of frequency or velocity?.  Ultrasound Med Biol. 1989;  15 205-212
  • 13 Hoskins P R. Peak velocity estimation in arterial stenosis models using colour vector Doppler.  Ultrasound Med Biol. 1997;  23 889-897
  • 14 Fei D Y, Liu D D, Fu C T. et al . Feasibility of angle independent Doppler color imaging for in vivo application: Preliminary study on carotid arteries.  Ultrasound in Medicine and Biology. 1997;  23 59-67
  • 15 Cheng C, Tempel D, Harperen van R. et al . Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress.  Circulation. 2006;  113 2744-2753
  • 16 Richter Y, Edelman E R. Cardiology is flow.  Circulation. 2006;  113 2679-2682
  • 17 Udesen J, Gran F, Hansen K L. et al . High frame-rate blood vector velocity imaging using plane waves: simulations and preliminary experiments.  IEEE Trans Ultrason Ferroelec Freq Contr. 2008;  55 1729-1743
  • 18 Udesen J, Gran F, Hansen K L. et al . Fast blood vector velocity imaging: Simulations and preliminary in vivo results.  Proc IEEE Ultrason Symp. 2007;  1005-1008
  • 19 Jensen J A, Holm O, Jensen L J. et al . Experimental ultrasound system for real-time synthetic imaging.  IEEE Ultrason Symp. 1999;  2 1595-1599
  • 20 Jensen J A, Holm O, Jensen L J. et al . Ultrasound research scanner for real-time synthetic aperture image acquisition.  IEEE Trans Ultrason Ferroelec Freq Contr. 2005;  52 881-891
  • 21 Tanter M, Bercoff J, Sandrin L. et al . Ultrafast compound imaging for 2-d motion vector estimation: application to transient elastography.  IEEE Trans Ultrason Ferroelec Freq Contr. 2002;  49 1363-1374
  • 22 Gran F, Udesen J, Nielsen M B. et al . Coded ultrasound for blood flow estimation using subband processing.  IEEE Trans Ultrason Ferroelec Freq Contr. 2009;  55 2211-2220
  • 23 US Food and Drug Administration. 510 (k) guide for measuring and reporting acoustic output of diagnostic medical devices. FDA, Tech Rep, Center for Devices and Radiological Health 1985
  • 24 Trahey G E, Allison J W, Ramm O T. Angle independent ultrasonic detection of blood flow.  IEEE Trans Biomed Eng. 1987;  34 965-967
  • 25 Friemel B H, Bohs L N, Trahey G E. Relative performance of two-dimensional speckle-tracking techniques: normalized correlation, non-normalized correlation and sum-absolute-difference.  Proc IEEE Ultrason Symp. 1995;  2 1481-1484
  • 26 Oddershede N, Hansen K L, Nielsen M B. et al . In-vivo examples of synthetic aperture vector flow imaging.  Proc SPIE Med Imag. 2007;  8 6510-6513
  • 27 Udesen J, Nielsen M B, Nielsen K R. et al . Examples of In Vivo Blood vector velocity Estimation.  Ultrasound Med Biol. 2007;  33 541-548
  • 28 Belz G G. Elastic properties and Windkessel function of the human aorta.  Cadiovasc Drugs Ther. 1995;  9 73-83
  • 29 Birchall D, Zaman A, Hacker J. et al . Analysis of haemodynamic disturbance in the atherosclerotic carotid artery using computational fluid dynamics.  Eur Radiol. 2006;  16 1074-1083
  • 30 Xue Y J, Gao P Y, Duan Q. et al . Preliminary study of hemodynamic distribution in patient-specific stenotic carotid bifurcation by image-based computational fluid dynamics.  Acad Radiol. 2008;  49 558-565
  • 31 Schuierer G, Huk W J. Diagnostic significance of flow separation within the carotid bifurcation demonstrated by digital subtraction angiography.  Stroke. 1990;  21 1674-1679
  • 32 Stokholm R, Oyre S, Ringgaard S. et al . Determination of Wall Shear Rate in the Human Carotid Artery by Magnetic Resonance Techniques.  Eur J Vasc Endovasc surg. 2000;  20 427-433
  • 33 Papathanasopoulou P, Zhao S Z, Kohler U. et al . MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions.  J Magn Reson Imaging. 2003;  17 153-162
  • 34 Marshall I, Zhao S Z, Papathanasopoulou P. et al . MRI and CDF studies of pulsatile flow in healthy and stenosed carotid bifurcation models.  J Biomech. 2004;  37 679-687
  • 35 Qui Y, Quijano R C, Wang S K. et al . Fluid dynamics of venous valve closure.  Ann Biomed Eng. 1995;  23 750-759
  • 36 Lurie F, Kistner R L, Eklof B. et al . Mechanism of venous valve closure and role of the valve in circulation: A new concept.  J Vasc Surg. 2003;  38 955-961
  • 37 Fisher J, Vaghaiwalla F, Tsitlik J. et al . Determinants and clinical significance of jugular venous valve competence.  Circulation. 1982;  65 188-196
  • 38 Nedelmann M, Techner D, Dieterich M. Analysis of internal jugular vein insufficiency – a comparison of two ultrasound methods.  Ultrasound Med Biol. 2007;  33 857-862
  • 39 Akkawi N M, Agosti C, Borroni B. et al . Jugular valve incompetence: A study using air contrast ultrasonography on a general population.  J Ultrasound Med. 2002;  21 747-751
  • 40 Shipkowitz T, Rodgers V GJ, Frazin L J. et al . Numerical study on the effect of secondary flow in the human aorta on local shear stresses in abdominal aortic branches.  J Biomech. 2000;  33 717-728

Kristoffer Lindskov Hansen

Department of Radiology, University Hospital of Copenhagen

Blegdamsvej 9

2100 Copenhagen Ø

Denmark

Phone: ++ 45/3 54 56 89 4

Fax: ++ 45/3 54 52 05 8

Email: lindskov@gmail.com

    >