Semin Musculoskelet Radiol 2009; 13(1): 074-084
DOI: 10.1055/s-0029-1202942
© Thieme Medical Publishers

In Vivo 7.0-Tesla Magnetic Resonance Imaging of the Wrist and Hand: Technical Aspects and Applications

Klaus M. Friedrich1 , Gregory Chang2 , Renata L. R. Vieira2 , Ligong Wang2 , Graham C. Wiggins2 , Mark E. Schweitzer3 , Ravinder R. Regatte2
  • 1Medical University of Vienna, Department of Radiology, Center of Excellence “High-Field MR,” Vienna, Austria
  • 2NYU Langone Medical Center, Department of Radiology, Center for Biomedical Imaging, New York, New York
  • 3Diagnostic Imaging, The Ottawa Hospital, Ottawa, Canada
Further Information

Publication History

Publication Date:
23 February 2009 (online)

ABSTRACT

Magnetic resonance imaging (MRI) at 7.0 T has the potential for higher signal-to-noise ratio (SNR), improved spectral resolution, and faster imaging compared with 1.5-T and 3.0-T MR systems. This is especially interesting for challenging imaging regions like the wrist and the hand because of the small size of the visualized anatomical structures; the increase in SNR could then be directly converted into higher spatial resolution of the images. Practically, imaging at 7.0 T poses a variety of technical challenges such as static (B0) and radiofrequency (B1) homogeneities, shimming, chemical shift artifacts, susceptibility artifacts, alterations in tissue contrast, specific absorption rate limitations, coil construction, and pulse sequence tuning. Despite these limitations, this first experience in anatomical imaging of the wrist and the hand at 7.0 T is very promising. Functional imaging techniques will gain importance at ultra-high-field MRI and need to be assessed in detail in the future.

REFERENCES

  • 1 Pakin S K, Cavalcanti C, La Rocca R, Schweitzer M E, Regatte R R. Ultra-high-field MRI of knee joint at 7.0T: preliminary experience.  Acad Radiol. 2006;  13(9) 1135-1142
  • 2 Adriany G, Van de Moortele P F, Wiesinger F et al.. Transmit and receive transmission line arrays for 7 Tesla parallel imaging.  Magn Reson Med. 2005;  53(2) 434-445
  • 3 Ashman C J, Farooki S, Abduljalil A M, Chakeres D W. In vivo high resolution coronal MRI of the wrist at 8.0 Tesla.  J Comput Assist Tomogr. 2002;  26(3) 387-391
  • 4 Sodickson D K, McKenzie C A. A generalized approach to parallel magnetic resonance imaging.  Med Physs. 2001;  28(8) 1629-1643
  • 5 Sodickson D K, Manning W J. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays.  Magn Reson Med. 1997;  38(4) 591-603
  • 6 Pruessmann K P, Weiger M, Scheidegger M B, Boesiger P. SENSE: sensitivity encoding for fast MRI.  Magn Reson Med. 1999;  42(5) 952-962
  • 7 Bieri O, Mamisch T C, Trattnig S et al.. Optimized spectrally selective steady-state free precession sequences for cartilage imaging at ultra-high fields.  MAGMA. 2008;  21(1–2) 87-94
  • 8 Gruetter R, Weisdorf S A, Rajanayagan V et al.. Resolution improvements in in vivo 1H NMR spectra with increased magnetic field strength.  J Magn Reson Imaging. 1998;  135(1) 260-264
  • 9 Robitaille P M. On RF power and dielectric resonances in UHF MRI.  NMR Biomed. 1999;  12(5) 318-319
  • 10 Robitaille P M, Kangarlu A, Abduljalil A M. RF penetration in ultra high field MRI: challenges in visualizing details within the center of the human brain.  J Comput Assist Tomogr. 1999;  23(6) 845-849
  • 11 Vaughan J T, Garwood M, Collins C M et al.. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images.  Magn Reson Med. 2001;  46(1) 24-30
  • 12 Regatte R R, Schweitzer M E. Ultra-high-field MRI of the musculoskeletal system at 7.0T.  J Magn Reson Imaging. 2007;  25(2) 262-269
  • 13 Kocharian A, Adkins M C, Amrami K K et al.. Wrist: improved MR imaging with optimized transmit-receive coil design.  Radiology. 2002;  223(3) 870-876
  • 14 Lenk S, Ludescher B, Martirosan P et al.. 3.0 T high-resolution MR imaging of carpal ligaments and TFCC.  Rofo. 2004;  176(5) 664-667
  • 15 Saupe N, Prussmann K P, Luechinger R et al.. MR imaging of the wrist: comparison between 1.5- and 3-T MR imaging—preliminary experience.  Radiology. 2005;  234(1) 256-264
  • 16 Sennwald G. The wrist. New York, NY; Springer-Verlag 1987
  • 17 Rominger M B, Bernreuter W K, Kenney P J, Lee D H. MR imaging of anatomy and tears of wrist ligaments.  Radiographics. 1993;  13(6) 1233-1246 discussion 1247-1238
  • 18 Brown R R, Fliszar E, Cotten A, Trudell D, Resnick D. Extrinsic and intrinsic ligaments of the wrist: normal and pathologic anatomy at MR arthrography with three-compartment enhancement.  Radiographics. 1998;  18 667-674
  • 19 Yu J S, Habib P A. Normal MR imaging anatomy of the wrist and hand.  Radiol Clin North Am. 2006;  44(4) 569-581 viii
  • 20 Newitt D C, van Rietbergen B, Majumdar S. Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties.  Osteoporos Int. 2002;  13 278-287
  • 21 Carballido-Gamio J, Majumdar S. Clinical utility of microarchitecture measurements of trabecular bone.  Curr Osteoporos Rep. 2006;  4 64-70
  • 22 Krug R, Carballido-Gamio J, Burghardt A J et al.. Assessment of trabecular bone structure comparing magnetic resonance imaging at 3 Tesla with high-resolution peripheral quantitative computed tomography ex vivo and in vivo.  Osteoporos Int. 2008;  19(5) 653-661
  • 23 McKenzie C A, Williams A, Prasad P V. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5 T and 3.0 T.  J Magn Reson Imaging. 2006;  24 928-933
  • 24 Regatte R R, Akella S V, Lonner J H. T1 rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1 rho with T2.  J Magn Reson Imaging. 2006;  23 547-553
  • 25 Williams A, Shetty S K, Burstein D, Day C S, McKenzie C. Delayed gadolinium enhanced MRI of cartilage (dGEMRIC) of the first carpometacarpal (1CMC) joint: a feasibility study.  Osteoarthritis Cartilage. 2008;  16(4) 530-532
  • 26 Welsch G H, Mamisch T C, Hughes T et al.. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage.  Invest Radiol. 2008;  43(9) 619-626
  • 27 Borthakur A, Shapiro E M, Akella S V et al.. Quantifying sodium in the human wrist in vivo by using MR imaging.  Radiology. 2002;  224(2) 598-602
  • 28 Regatte R R, Akella S V, Wheaton A J et al.. T1 rho-relaxation mapping of human femoral-tibial cartilage in vivo.  J Magn Reson Imaging. 2003;  18 336-341
  • 28a Akella S V, Regatte R R, Borthakur A, Kneeland J B, Leigh J S, Reddy R. T1 rho MR imaging of the human wrist in vivo.  Acad Radiol. 2003;  10(6) 614-619
  • 29 Glaser C. New techniques for cartilage imaging: T2 relaxation time and diffusion-weighted MR imaging.  Radiol Clin North Am. 2005;  43 641-653
  • 30 Gambarota G, Veltien A, Klomp D et al.. Magnetic resonance imaging and T2 relaxometry of human median nerve at 7 Tesla.  Muscle Nerve. 2007;  36 368-373
  • 31 Boesch C. Musculoskeletal spectroscopy.  J Magn Reson Imaging. 2007;  25(2) 321-338
  • 32 Sinha S, Misra A, Rathi M et al.. Proton magnetic resonance spectroscopy and biochemical investigation of type 2 diabetes mellitus in Asian Indians: observation of high muscle lipids and C-reactive protein levels.  Magn Reson Imaging. 2009;  27 94-100
  • 33 Fayad L M, Barker P B, Bluemke D A. Molecular characterization of musculoskeletal tumors by proton MR spectroscopy.  Semin Musculoskelet Radiol. 2007;  11(3) 240-245
  • 34 Young I R, Bydder G M. Magnetic resonance: new approaches to imaging of the musculoskeletal system.  Physiol Meas. 2003;  24(4) R1-R23
  • 35 Palmieri F, De Keyzer F, Maes F, Van Breuseghem I. Magnetization transfer analysis of cartilage repair tissue: a preliminary study.  Skeletal Radiol. 2006;  35(12) 903-908
  • 36 Mamisch T C, Menzel M I, Welsch G H et al.. Steady-state diffusion imaging for MR in-vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3 Tesla—preliminary results.  Eur J Radiol. 2008;  65 72-79
  • 37 Miller K L, Hargreaves B A, Gold G E, Pauly J M. Steady-state diffusion-weighted imaging of in vivo knee cartilage.  Magn Reson Med. 2004;  51(2) 394-398
  • 38 Ogawa S, Menon R S, Tank D W et al.. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model.  Biophys J. 1993;  64(3) 803-812

Ravinder R RegattePh.D. 

NYU Langone Medical Center, Department of Radiology, Center for Biomedical Imaging

660 First Ave., New York, NY 10016

Email: ravinder.regatte@nyumc.org

    >