Semin Liver Dis 2009; 29(2): 155-165
DOI: 10.1055/s-0029-1214371
© Thieme Medical Publishers

Alcoholic Liver Disease and Methionine Metabolism

Kusum K. Kharbanda1 , 2
  • 1Department of Veterans Affairs Medical Center, Research Service, Omaha, Nebraska
  • 2Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
Further Information

Publication History

Publication Date:
22 April 2009 (online)

ABSTRACT

Alcoholic liver disease is a major health care problem worldwide. Findings have demonstrated that ethanol feeding impairs several of the multiple steps in methionine metabolism that leads to progressive liver injury. Ethanol consumption has been reported to predominantly inhibit the activity of a vital cellular enzyme, methionine synthase, involved in remethylating homocysteine. By way of compensation in some species, ethanol can also increase the activity of the enzyme, betaine homocysteine methyltransferase. This enzyme catalyzes an alternate pathway in methionine metabolism and utilizes hepatic betaine to remethylate homocysteine to form methionine and maintain levels of S-adenosylmethionine, the key methylating agent. Under extended periods of ethanol feeding, however, this alternate pathway cannot be maintained. This results in a decrease in the hepatocyte level of S-adenosylmethionine and increases in two toxic metabolites, S-adenosylhomocysteine and homocysteine. These changes in the various metabolites of methionine metabolism, in turn, result in serious functional consequences. These include decreases in essential methylation reactions by inhibiting various methyltransferases critical to normal functioning of the liver and upregulation of the activation of endoplasmic reticulum-dependent apoptosis and lipid synthetic pathways. The ultimate outcome of these consequences is increased fat deposition, increased apoptosis, accumulation of damaged proteins, and alterations in various signaling pathways, all of which can ultimately result in progressive liver damage.

Of all the therapeutic modalities that are presently being used to attenuate ethanol-induced liver injury, betaine has been shown to be the most effective in a variety of experimental models of liver disease. Betaine, by virtue of aiding in the remethylation of homocysteine, removes both toxic metabolites (homocysteine and S-adenosylhomocysteine), restores S-adenosylmethionine level, reverses steatosis, prevents apoptosis and reduces both damaged protein accumulation and oxidative stress. Thus, betaine is a promising therapeutic agent in relieving the methylation and other defects associated with alcoholic abuse.

REFERENCES

  • 1 Ishak K G, Zimmerman H J, Ray M B. Alcoholic liver disease: pathologic, pathogenetic, and clinical aspects.  Alcohol Clin Exp Res. 1991;  15 45-66
  • 2 Finkelstein J D, Martin J J. Methionine metabolism in mammals. Distribution of homocysteine between competing pathways.  J Biol Chem. 1984;  259 9508-9513
  • 3 Finkelstein J D, Mudd S H. Trans-sulfuration in mammals. The methionine-sparing effect of cystine.  J Biol Chem. 1967;  242 873-880
  • 4 Schubert H L, Blumenthal R M, Cheng X. Many paths to methyltransfer: a chronicle of convergence.  Trends Biochem Sci. 2003;  28 329-335
  • 5 Mudd S H, Brosnan J T, Brosnan M E et al.. Methyl balance and transmethylation fluxes in humans.  Am J Clin Nutr. 2007;  85 19-25
  • 6 Barak A J, Baker H, Tuma D J. Influence of ethanol on in-vivo levels of hepatic methylators betaine and N5-methyltetrahydrofolate in the rat.  IRCS Med Sci. 1981;  9 527-528
  • 7 Barak A J, Beckenhauer H C, Tuma D J. Ethanol feeding inhibits the activity of N5-methyltetrahydrofolate-homocysteine methyltransferase in the rat.  IRCS Med Sci. 1985;  13 760-761
  • 8 Barak A J, Beckenhauer H C, Tuma D J, Badakhsh S. Effects of prolonged ethanol feeding on methionine metabolism in rat liver.  Biochem Cell Biol. 1987;  65 230-233
  • 9 Trimble K C, Molloy A M, Scott J M, Weir D G. The effect of ethanol on one-carbon metabolism: increased methionine catabolism and lipotrope methyl-group wastage.  Hepatology. 1993;  18 984-989
  • 10 Halsted C H, Villanueva J, Chandler C J et al.. Ethanol feeding of micropigs alters methionine metabolism and increases hepatocellular apoptosis and proliferation.  Hepatology. 1996;  23 497-505
  • 11 Halsted C H, Villanueva J A, Devlin A M et al.. Folate deficiency disturbs hepatic methionine metabolism and promotes liver injury in the ethanol-fed micropig.  Proc Natl Acad Sci U S A. 2002;  99 10072-10077
  • 12 Villanueva J A, Halsted C H. Hepatic transmethylation reactions in micropigs with alcoholic liver disease.  Hepatology. 2004;  39 1303-1310
  • 13 Avila M A, Berasain C, Torres L et al.. Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma.  J Hepatol. 2000;  33 907-914
  • 14 Ji C, Deng Q, Kaplowitz N. Role of TNF-alpha in ethanol-induced hyperhomocysteinemia and murine alcoholic liver injury.  Hepatology. 2004;  40 442-451
  • 15 Kenyon S H, Nicolaou A, Gibbons W A. The effect of ethanol and its metabolites upon methionine synthase activity in vitro.  Alcohol. 1998;  15 305-309
  • 16 Barak A J, Beckenhauer H C, Tuma D J. Betaine effects on hepatic methionine metabolism elicited by short-term ethanol feeding.  Alcohol. 1996;  13 483-486
  • 17 Kharbanda K K, Mailliard M E, Baldwin C R et al.. Betaine attenuates alcoholic steatosis by restoring phosphatidylcholine generation via the phosphatidylethanolamine methyltransferase pathway.  J Hepatol. 2007;  46 314-321
  • 18 Seth D, Leo M A, McGuinness P H et al.. Gene expression profiling of alcoholic liver disease in the baboon (Papio hamadryas) and human liver.  Am J Pathol. 2003;  163 2303-2317
  • 19 Look M P, Riezler R, Reichel C et al.. Is the increase in serum cystathionine levels in patients with liver cirrhosis a consequence of impaired homocysteine transsulfuration at the level of gamma-cystathionase?.  Scand J Gastroenterol. 2000;  35 866-872
  • 20 Barak A J, Beckenhauer H C, Tuma D J, Donohue T M. Adaptive increase in betaine-homocysteine methyltransferase activity maintains hepatic S-adenosylmethionine levels in ethanol-treated rats.  IRCS Med Sci. 1984;  12 866-867
  • 21 Chern M K, Gage D A, Pietruszko R. Betaine aldehyde, betaine, and choline levels in rat livers during ethanol metabolism.  Biochem Pharmacol. 2000;  60 1629-1637
  • 22 Barak A J, Beckenhauer H C, Junnila M, Tuma D J. Dietary betaine promotes generation of hepatic S-adenosylmethionine and protects the liver from ethanol-induced fatty infiltration.  Alcohol Clin Exp Res. 1993;  17 552-555
  • 23 Lu S C, Huang Z Z, Yang H et al.. Changes in methionine adenosyltransferase and S-adenosylmethionine homeostasis in alcoholic rat liver.  Am J Physiol Gastrointest Liver Physiol. 2000;  279 G178-G185
  • 24 Lieber C S, Casini A, DeCarli L M et al.. S-adenosyl-L-methionine attenuates alcohol-induced liver injury in the baboon.  Hepatology. 1990;  11 165-172
  • 25 Villanueva J A, Esfandiari F, Wong D H et al.. Abnormal transsulfuration and glutathione metabolism in the micropig model of alcoholic liver disease.  Alcohol Clin Exp Res. 2006;  30 1262-1270
  • 26 Martinez-Lopez N, Varela-Rey M, Ariz U et al.. S-adenosylmethionine and proliferation: new pathways, new targets.  Biochem Soc Trans. 2008;  36 848-852
  • 27 Mato J M, Corrales F J, Lu S C, Avila M A. S-Adenosylmethionine: a control switch that regulates liver function.  FASEB J. 2002;  16 15-26
  • 28 Lee T D, Sadda M R, Mendler M H et al.. Abnormal hepatic methionine and glutathione metabolism in patients with alcoholic hepatitis.  Alcohol Clin Exp Res. 2004;  28 173-181
  • 29 Alvarez L, Corrales F, Martin-Duce A, Mato J M. Characterization of a full-length cDNA encoding human liver S-adenosylmethionine synthetase: tissue-specific gene expression and mRNA levels in hepatopathies.  Biochem J. 1993;  293 481-486
  • 30 Finkelstein J D, Cello J P, Kyle W E. Ethanol-induced changes in methionine metabolism in rat liver.  Biochem Biophys Res Commun. 1974;  61 525-531
  • 31 Cabrero C, Duce A M, Ortiz P et al.. Specific loss of the high-molecular-weight form of S-adenosyl-L-methionine synthetase in human liver cirrhosis.  Hepatology. 1988;  8 1530-1534
  • 32 Duce A M, Ortiz P, Cabrero C, Mato J M. S-adenosyl-L-methionine synthetase and phospholipid methyltransferase are inhibited in human cirrhosis.  Hepatology. 1988;  8 65-68
  • 33 Jewell S A, Di Monte D, Gentile A et al.. Decreased hepatic glutathione in chronic alcoholic patients.  J Hepatol. 1986;  3 1-6
  • 34 Lu S C, Huang Z Z, Yang J M, Tsukamoto H. Effect of ethanol and high-fat feeding on hepatic gamma-glutamylcysteine synthetase subunit expression in the rat.  Hepatology. 1999;  30 209-214
  • 35 Fernandez-Checa J C, Ookhtens M, Kaplowitz N. Effects of chronic ethanol feeding on rat hepatocytic glutathione. Relationship of cytosolic glutathione to efflux and mitochondrial sequestration.  J Clin Invest. 1989;  83 1247-1252
  • 36 Fernandez-Checa J C, Garcia-Ruiz C, Ookhtens M, Kaplowitz N. Impaired uptake of glutathione by hepatic mitochondria from chronic ethanol-fed rats. Tracer kinetic studies in vitro and in vivo and susceptibility to oxidant stress.  J Clin Invest. 1991;  87 397-405
  • 37 Hirano T, Kaplowitz N, Tsukamoto H et al.. Hepatic mitochondrial glutathione depletion and progression of experimental alcoholic liver disease in rats.  Hepatology. 1992;  16 1423-1427
  • 38 Fernandez-Checa J C, Hirano T, Tsukamoto H, Kaplowitz N. Mitochondrial glutathione depletion in alcoholic liver disease.  Alcohol. 1993;  10 469-475
  • 39 Garcia-Ruiz C, Morales A, Ballesta A et al.. Effect of chronic ethanol feeding on glutathione and functional integrity of mitochondria in periportal and perivenous rat hepatocytes.  J Clin Invest. 1994;  94 193-201
  • 40 Fernandez-Checa J C, Kaplowitz N. Hepatic mitochondrial glutathione: transport and role in disease and toxicity.  Toxicol Appl Pharmacol. 2005;  204 263-273
  • 41 Wheeler M D, Nakagami M, Bradford B U et al.. Overexpression of manganese superoxide dismutase prevents alcohol-induced liver injury in the rat.  J Biol Chem. 2001;  276 36664-36672
  • 42 Colell A, Garcia-Ruiz C, Morales A et al.. Transport of reduced glutathione in hepatic mitochondria and mitoplasts from ethanol-treated rats: effect of membrane physical properties and S-adenosyl-L-methionine.  Hepatology. 1997;  26 699-708
  • 43 Coll O, Colell A, Garcia-Ruiz C et al.. Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion.  Hepatology. 2003;  38 692-702
  • 44 Lluis J M, Colell A, Garcia-Ruiz C et al.. Acetaldehyde impairs mitochondrial glutathione transport in HepG2 cells through endoplasmic reticulum stress.  Gastroenterology. 2003;  124 708-724
  • 45 Bailey S M, Patel V B, Young T A et al.. Chronic ethanol consumption alters the glutathione/glutathione peroxidase-1 system and protein oxidation status in rat liver.  Alcohol Clin Exp Res. 2001;  25 726-733
  • 46 Deaciuc I V, Fortunato F, D'Souza N B et al.. Modulation of caspase-3 activity and Fas ligand mRNA expression in rat liver cells in vivo by alcohol and lipopolysaccharide.  Alcohol Clin Exp Res. 1999;  23 349-356
  • 47 Hultberg B, Berglund M, Andersson A, Frank A. Elevated plasma homocysteine in alcoholics.  Alcohol Clin Exp Res. 1993;  17 687-689
  • 48 Cravo M L, Camilo M E. Hyperhomocysteinemia in chronic alcoholism: relations to folic acid and vitamins B(6) and B(12) status.  Nutrition. 2000;  16 296-302
  • 49 Stickel F, Choi S W, Kim Y I et al.. Effect of chronic alcohol consumption on total plasma homocysteine level in rats.  Alcohol Clin Exp Res. 2000;  24 259-264
  • 50 Ji C, Kaplowitz N. Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice.  Gastroenterology. 2003;  124 1488-1499
  • 51 Bleich S, Bandelow B, Javaheripour K et al.. Hyperhomocysteinemia as a new risk factor for brain shrinkage in patients with alcoholism.  Neurosci Lett. 2003;  335 179-182
  • 52 Bonsch D, Lenz B, Reulbach U et al.. Homocysteine associated genomic DNA hypermethylation in patients with chronic alcoholism.  J Neural Transm. 2004;  111 1611-1616
  • 53 Blasco C, Caballeria J, Deulofeu R et al.. Prevalence and mechanisms of hyperhomocysteinemia in chronic alcoholics.  Alcohol Clin Exp Res. 2005;  29 1044-1048
  • 54 Barak A J, Beckenhauer H C, Kharbanda K K, Tuma D J. Chronic ethanol consumption increases homocysteine accumulation in hepatocytes.  Alcohol. 2001;  25 77-81
  • 55 Finkelstein J D, Martin J J, Harris B J, Kyle W E. Regulation of the betaine content of rat liver.  Arch Biochem Biophys. 1982;  218 169-173
  • 56 Refsum H, Fiskerstrand T, Guttormsen A B, Ueland P M. Assessment of homocysteine status.  J Inherit Metab Dis. 1997;  20 286-294
  • 57 Barak A J, Beckenhauer H C, Mailliard M E et al.. Betaine lowers elevated S-adenosylhomocysteine levels in hepatocytes from ethanol-fed rats.  J Nutr. 2003;  133 2845-2848
  • 58 Song Z, Zhou Z, Song M et al.. Alcohol-induced S-adenosylhomocysteine accumulation in the liver sensitizes to TNF hepatotoxicity: possible involvement of mitochondrial S-adenosylmethionine transport.  Biochem Pharmacol. 2007;  74 521-531
  • 59 Clarke S, Banfield K. S-adenosylmethionine-dependent methyltransferases. In: Carmel R, Jacobsen DW Homocysteine in Health and Disease. Cambridge; Cambridge University Press 2001: 63-78
  • 60 Noga A A, Zhao Y, Vance D E. An unexpected requirement for phosphatidylethanolamine N-methyltransferase in the secretion of very low density lipoproteins.  J Biol Chem. 2002;  277 42358-42365
  • 61 Zhu X, Song J, Mar M H et al.. Phosphatidylethanolamine-N-methyltransferase (PEMT) knockout mice have hepatic steatosis and abnormal hepatic choline metabolite concentrations despite ingesting a recommended dietary intake of choline.  Biochem J. 2003;  370 987-993
  • 62 Nishimaki-Mogami T, Yao Z, Fujimori K. Inhibition of phosphatidylcholine synthesis via the phosphatidylethanolamine methylation pathway impairs incorporation of bulk lipids into VLDL in cultured rat hepatocytes.  J Lipid Res. 2002;  43 1035-1045
  • 63 Rando R R. Chemical biology of isoprenylation/methylation.  Biochem Soc Trans. 1996;  24 682-687
  • 64 Kramer K, Harrington E O, Lu Q et al.. Isoprenylcysteine carboxyl methyltransferase activity modulates endothelial cell apoptosis.  Mol Biol Cell. 2003;  14 848-857
  • 65 Shimizu T, Matsuoka Y, Shirasawa T. Biological significance of isoaspartate and its repair system.  Biol Pharm Bull. 2005;  28 1590-1596
  • 66 Clarke S. Aging as war between chemical and biochemical processes: protein methylation and the recognition of age-damaged proteins for repair.  Ageing Res Rev. 2003;  2 263-285
  • 67 Doyle H A, Zhou J, Wolff M J et al.. Isoaspartyl post-translational modification triggers anti-tumor T and B lymphocyte immunity.  J Biol Chem. 2006;  281 32676-32683
  • 68 Vigneswara V, Lowenson J D, Powell C D et al.. Proteomic identification of novel substrates of a protein isoaspartyl methyltransferase repair enzyme.  J Biol Chem. 2006;  281 32619-32629
  • 69 Boisvert F M, Cote J, Boulanger M C, Richard S. A proteomic analysis of arginine-methylated protein complexes.  Mol Cell Proteomics. 2003;  2 1319-1330
  • 70 Kharbanda K K, Rogers II D D, Mailliard M E et al.. Role of elevated S-adenosylhomocysteine in rat hepatocyte apoptosis: protection by betaine.  Biochem Pharmacol. 2005;  70 1883-1890
  • 71 Kharbanda K K, Rogers II D D, Beckenhauer H C et al.. Tubercidin-induced apoptosis via increased hepatocellular levels of S-adenosylhomocysteine is attenuated by betaine administration.  Alcohol Clin Exp Res. 2005;  29 182A
  • 72 Kharbanda K K, Mailliard M E, Baldwin C R et al.. Accumulation of proteins bearing atypical isoaspartyl residues in livers of alcohol-fed rats is prevented by betaine administration: effects on protein-l-isoaspartyl methyltransferase activity.  J Hepatol. 2007;  46 1119-1125
  • 73 Carter W G, Vigneswara V, Atkins R et al.. Proteomic characterization of both altered protein level and isoaspartate carboxyl methylation in a model of alcoholic liver disease.  Alcohol Clin Exp Res. 2008;  32 343A
  • 74 Osna N A, Donohue T M, White R L et al.. Ethanol and hepatic C viral proteins regulate interferon signaling in liver cells via impaired methylation of Stat1.  Hepatology. 2008;  48 327A
  • 75 Kharbanda K K. Role of transmethylation reactions in alcoholic liver disease.  World J Gastroenterol. 2007;  13 4947-4954
  • 76 Jakubowski H. Pathophysiological consequences of homocysteine excess.  J Nutr. 2006;  136 1741S-1749S
  • 77 Torres L, Garcia-Trevijano E R, Rodriguez J A et al.. Induction of TIMP-1 expression in rat hepatic stellate cells and hepatocytes: a new role for homocysteine in liver fibrosis.  Biochim Biophys Acta. 1999;  1455 12-22
  • 78 Ji C, Chan C, Kaplowitz N. Predominant role of sterol response element binding proteins (SREBP) lipogenic pathways in hepatic steatosis in the murine intragastric ethanol feeding model.  J Hepatol. 2006;  45 717-724
  • 79 Esfandiari F, Villanueva J A, Wong D H et al.. Chronic ethanol feeding and folate deficiency activate hepatic endoplasmic reticulum stress pathway in micropigs.  Am J Physiol Gastrointest Liver Physiol. 2005;  289 G54-G63
  • 80 Ji C, Kaplowitz N. Hyperhomocysteinemia, endoplasmic reticulum stress, and alcoholic liver injury.  World J Gastroenterol. 2004;  10 1699-1708
  • 81 Ji C. Dissection of endoplasmic reticulum stress signaling in alcoholic and non-alcoholic liver injury.  J Gastroenterol Hepatol. 2008;  23(Suppl 1) S16-S24
  • 82 Shukla S D, Aroor A R. Epigenetic effects of ethanol on liver and gastrointestinal injury.  World J Gastroenterol. 2006;  12 5265-5271
  • 83 Pal-Bhadra M, Bhadra U, Jackson D E et al.. Distinct methylation patterns in histone H3 at Lys-4 and Lys-9 correlate with up- & down-regulation of genes by ethanol in hepatocytes.  Life Sci. 2007;  81 979-987
  • 84 Shukla S D, Velazquez J, French S W et al.. Emerging role of epigenetics in the actions of alcohol.  Alcohol Clin Exp Res. 2008;  32 1525-1534
  • 85 Bardag-Gorce F, Dedes J, French B A et al.. Mallory body formation is associated with epigenetic phenotypic change in hepatocytes in vivo.  Exp Mol Pathol. 2007;  83 160-168
  • 86 Bardag-Gorce F, French B A, Joyce M et al.. Histone acetyltransferase p300 modulates gene expression in an epigenetic manner at high blood alcohol levels.  Exp Mol Pathol. 2007;  82 197-202
  • 87 Baric I, Fumic K, Glenn B et al.. S-adenosylhomocysteine hydrolase deficiency in a human: a genetic disorder of methionine metabolism.  Proc Natl Acad Sci U S A. 2004;  101 4234-4239
  • 88 Kloor D, Fumic K, Attig S et al.. Studies of S-adenosylhomocysteine-hydrolase polymorphism in a Croatian population.  J Hum Genet. 2006;  51 21-24
  • 89 Kharbanda K K, Rogers II D D, Mailliard M E et al.. A comparison of the effects of betaine and S-adenosylmethionine on ethanol-induced changes in methionine metabolism and steatosis in rat hepatocytes.  J Nutr. 2005;  135 519-524
  • 90 Craig S A. Betaine in human nutrition.  Am J Clin Nutr. 2004;  80 539-549
  • 91 Kanbak G, Inal M, Baycu C. Ethanol-induced hepatotoxicity and protective effect of betaine.  Cell Biochem Funct. 2001;  19 281-285
  • 92 Balkan J, Oztezcan S, Kucuk M et al.. The effect of betaine treatment on triglyceride levels and oxidative stress in the liver of ethanol-treated guinea pigs.  Exp Toxicol Pathol. 2004;  55 505-509
  • 93 Kim S J, Jung Y S, Kwon do Y, Kim Y C. Alleviation of acute ethanol-induced liver injury and impaired metabolomics of S-containing substances by betaine supplementation.  Biochem Biophys Res Commun. 2008;  368 893-898
  • 94 Lieber C S, Packer L. S-Adenosylmethionine: molecular, biological, and clinical aspects–an introduction.  Am J Clin Nutr. 2002;  76 1148S-1150S
  • 95 Purohit V, Abdelmalek M F, Barve S et al.. Role of S-adenosylmethionine, folate, and betaine in the treatment of alcoholic liver disease: summary of a symposium.  Am J Clin Nutr. 2007;  86 14-24
  • 96 Seitz H K, Lieber C S, Stickel F et al.. Alcoholic liver disease: from pathophysiology to therapy.  Alcohol Clin Exp Res. 2005;  29 1276-1281
  • 97 Barve S, Joshi-Barve S, Song Z et al.. Interactions of cytokines, S-adenosylmethionine, and S-adenosylhomocysteine in alcohol-induced liver disease and immune suppression.  J Gastroenterol Hepatol. 2006;  21(Suppl 3) S38-S42
  • 98 Barve A, Khan R, Marsano L et al.. Treatment of alcoholic liver disease.  Ann Hepatol. 2008;  7 5-15
  • 99 Yang H, Sadda M R, Li M et al.. S-adenosylmethionine and its metabolite induce apoptosis in HepG2 cells: role of protein phosphatase 1 and Bcl-x(S).  Hepatology. 2004;  40 221-231
  • 100 Lu S C, Martinez-Chantar M L, Mato J M. Methionine adenosyltransferase and S-adenosylmethionine in alcoholic liver disease.  J Gastroenterol Hepatol. 2006;  21(Suppl 3) S61-S64
  • 101 Friedel H A, Goa K L, Benfield P. S-adenosyl-L-methionine. A review of its pharmacological properties and therapeutic potential in liver dysfunction and affective disorders in relation to its physiological role in cell metabolism.  Drugs. 1989;  38 389-416
  • 102 Olthof M R, Verhoef P. Effects of betaine intake on plasma homocysteine concentrations and consequences for health.  Curr Drug Metab. 2005;  6 15-22
  • 103 Mato J M, Camara J, Fernandez de Paz J et al.. S-adenosylmethionine in alcoholic liver cirrhosis: a randomized, placebo-controlled, double-blind, multicenter clinical trial.  J Hepatol. 1999;  30 1081-1089
  • 104 Rambaldi A, Gluud C. S-adenosyl-l-methionine for alcoholic liver diseases.  Cochrane Database Syst Rev. 2006;  CD002235

Kusum K KharbandaPh.D. 

Department of Veterans Affairs Medical Center, Research Service (151)

4101 Woolworth Avenue, Omaha, NE 68105

Email: kkharbanda@unmc.edu

    >