Planta Med 2011; 77(6): 641-646
DOI: 10.1055/s-0030-1250642
Tropical Diseases
Reviews
© Georg Thieme Verlag KG Stuttgart · New York

Buruli Ulcer: A Review of In Vitro Tests to Screen Natural Products for Activity against Mycobacterium ulcerans

Achille Yemoa1 , Joachim Gbenou2 , Dissou Affolabi3 , Mansourou Moudachirou2 , André Bigot1 , Séverin Anagonou3 , Françoise Portaels4 , Joëlle Quetin-Leclercq5 , Anandi Martin4
  • 1UFR Pharmacie, Faculté des Sciences de Santé Université d'Abomey Calavi (UAC), Cotonou, Bénin
  • 2Laboratoire de Pharmacognosie et des Huiles Essentielles (LAPHE), Cotonou, Bénin
  • 3Laboratoire de Référence des Mycobactéries (LRM), Cotonou, Bénin
  • 4Institute of Tropical Medicine (ITM), Microbiology Department, Mycobacteriology Unit, Antwerpen, Belgium
  • 5Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacognosy Research Group, Bruxelles, Belgium
Further Information

Publication History

received July 14, 2010 revised Nov. 25, 2010

accepted Nov. 27, 2010

Publication Date:
14 January 2011 (online)

Abstract

Buruli ulcer (BU), caused by Mycobacterium ulcerans, has recently been recognized by the World Health Organization (WHO) as an important emerging disease. It is largely a problem of the poor in remote rural areas and has emerged as an important cause of human suffering. While antimycobacterial therapy is often effective for the earliest nodular or ulcerative lesions, for advanced ulcerated lesions, surgery is sometimes necessary. Antimycobacterial drugs may also prevent relapses or disseminated infections. Efficient alternatives different from surgery are presently explored because this treatment deals with huge restrictive factors such as the necessity of prolonged hospitalization, its high cost, and the scars after surgery. Traditional treatment remains the first option for poor populations of remote areas who may have problems of accessibility to synthetic products because of their high cost. The search for efficient natural products active on M. ulcerans should then be encouraged because they are part of the natural heritage of these populations; they are affordable financially and can be used at the earliest stage. This review provides a number of tests that will help to evaluate the antimycobacterial activity of natural products against M. ulcerans, which are adapted to its slow growing rate, and lists active extracts published up to now in Medline.

References

  • 1 Asiedu K, Scherpbier R, Raviglione M. Ulcère de Buruli: infection à Mycobacterium ulcerans. Belgium; OMS 2000
  • 2 Josse R, Guédénon A, Darie H, Anagonou S, Portaels F, Meyers W M. Les infections cutanées à Mycobacterium ulcerans: ulcères de Buruli.  Med Trop. 1995;  55 363-373
  • 3 Johnson P D, Veitch M G, Flood P E, Hayman J A. Mycobacterium ulcerans infection on Phillip Island, Victoria.  Med J Aust. 1995;  162 221-222
  • 4 Marston B J, Diallo M O, Horsburgh Jr C R, Diomande I, Saki M Z, Kanga J M, Patrice G, Lipman H B, Ostroff S M, Good R C. Emergence of Buruli ulcer disease in the Daloa region of Côte d'Ivoire.  Am J Trop Med Hyg. 1995;  52 219-224
  • 5 Chauty A, Ardant M F, Adeye A, Euverte H, Guédénon A, Johnson C, Aubry J, Nuermberger E, Grosset J. Promising clinical efficacy of streptomycin-rifampin combination for treatment of buruli ulcer (Mycobacterium ulcerans disease).  Antimicrob Agents Chemother. 2007;  51 4029-4035
  • 6 Nienhuis W A, Stienstra Y, Thompson W A, Awuah P C, Abass K M, Tuah W, Awua-Boateng N Y, Ampadu E O, Siegmund V, Schouten J P, Adjei O, Bretzel G, van der Werf T S. Antimicrobial treatment for early, limited Mycobacterium ulcerans infection: a randomized controlled trial.  Lancet. 2010;  37 664-672
  • 7 Johnson P D. Should antibiotics be given for Buruli ulcer?.  Lancet. 2010;  20 664-672
  • 8 Kibadi K, Boelaert M, Fraga A G, Kayinua M, Longatto-Filho A, Minuku J B, Mputu-Yamba J B, Muyembe-Tamfum J J, Pedrosa J, Roux J J, Meyers W M, Portaels F. Response to treatment in a prospective cohort of patients with large ulcerated lesions suspected to be Buruli ulcer (Mycobacterium ulcerans disease).  PloS Negl Trop Dis. 2010;  4 e736
  • 9 Johnson R C, Makoutode M, Hougnihin R, Guédénon A, Ifebe D, Boko M, Portaels F. Le traitement traditionnel de l'ulcère de Buruli au Bénin.  Med Trop. 2004;  64 145-150
  • 10 Guédénon A, Zinsou C, Josse R, Andélé K, Portaels F. Traditional treatment of Buruli ulcer in Benin.  Arch Dermatol. 1995;  131 741-742
  • 11 Yemoa A L, Gbenou J D, Johnson R C, Djego J G, Zinsou C, Moudachirou M, Quetin-Leclercq J, Bigot A, Portaels F. Identification et étude phytochimique de plantes utilisées dans le traitement traditionnel de l'ulcère de Buruli au Bénin.  Ethnopharmacologia. 2008;  42 50-57
  • 12 Kone M, Vangah-Mandah O M, Kouakou H, Yapo A P, Bleyere N M, Datte Y J, N'guessan B B, Joulia E D, D'Horpock A F, Ehile E E. Influence de Sacoglottis gabonensis (Baille) urban et de Okoubaka aubrevillei normand et pellegrin sur la croissance in vitro de Mycobacterium ulcerans.  Le pharmacien d'Afrique. 2007;  206 17-22
  • 13 Cos P, Vlietinck A J, Berghe D V, Maes L. Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept'.  J Ethnopharmacol. 2006;  106 290-302
  • 14 Sawai J, Doi R, Maekawa Y, Yoshikawa T, Kojima H. Indirect conductimetric assay of antibacterial activities.  J Indian Microbiol Biotechnol. 2002;  29 296-298
  • 15 Verkman A S. Drug discovery in academia.  Am J Physiol Cell Physiol. 2004;  286 465-474
  • 16 Gautam R, Saklani A, Jachak S M. Indian medicinal plants as a source of antimycobacterial agents.  J Ethnopharmacol. 2007;  110 200-234
  • 17 Portaels F, Traore H, de Ridder K, Meyers W M. In vitro susceptibility of Mycobacterium ulcerans to clarithromycin.  Antimicrob Agents Chemother. 1998;  42 2070-2073
  • 18 Bueno-Sánchez J G, Kouznetsov V V. Antimycobacterial susceptibility testing methods for natural products research.  Braz J Microbiol. 2010;  41 270-277
  • 19 Nostro A, Germano M P, D'Angelo V, Marino A, Cannatelli M A. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity.  Lett Microbiol. 2000;  30 379-384
  • 20 Silva M T, Simas S M, Batista T G, Cardarelli P, Tomassini T C. Studies on antimicrobial activity, in vitro, of Physalis angulata L. (Solanaceae) fraction and physalin B bringing out the importance of assay determination.  Mem Inst Oswaldo Cruz. 2005;  100 779-782
  • 21 Barker L P, Lien B A, Brun O S, Schaak D D, McDonough K A, Chang L C. A Mycobacterium marinum zone of inhibition assay as a method for screening potential antimycobacterial compounds from marine extracts.  Planta Med. 2007;  73 559-563
  • 22 Connell N D, Nikaido H. Membrane permeability and transport in Mycobacterium tuberculosis. Bloom BR Tuberculosis: pathogenesis, protection and control. Washington; American Society of Microbiology 1994: 333-452
  • 23 Palomino J C, Obiang A M, Realini L, Meyers W M, Portaels F. Effect of oxygen on growth of Mycobacterium ulcerans in the BACTEC system.  J Clin Microbiol. 1998;  36 3420-3422
  • 24 Cantrell C L, Fischer N H, Urbatsch L, McGuire M S, Franzblau S G. Antimicrobial crude plant extracts from South, Central, and North America.  Phytomedicine. 1998;  5 137-145
  • 25 Rajab M S, Cantrell C L, Franzblau S G, Fischer N H. Antimycobacterial activity of (E)-phytol and derivatives: a preliminary structure activity study.  Planta Med. 1998;  64 2-4
  • 26 Sanders C A, Nieda R R, Desmond E P. Validation of the use of Middlebrook 7H10 agar, BACTEC MGIT 960, and BACTEC 460 12B media for testing the susceptibility of Mycobacterium tuberculosis to levofloxacin.  J Clin Microbiol. 2004;  42 5225-5228
  • 27 Diaz-Infantes M S, Ruiz-Serrano M J, Martinez-Sànchez L, Ortega A, Bouza E. Evaluation of the MB/BacT Mycobacterium detection system for susceptibility testing of Mycobacterium tuberculosis.  J Clin Microbiol. 2000;  38 1988-1989
  • 28 Ruiz P, Zerolo F J, Casal M J. Comparison of susceptibility testing of Mycobacterium tuberculosis using the ESP culture system II with that using the BACTEC method.  J Clin Microbiol. 2000;  38 4663-4664
  • 29 Ji B, Lefrançois S, Robert J, Chauffour A, Truffot C, Jarlier V. In vitro and in vivo activities of rifampin, streptomycin, amikacin, moxifloxacin, R207910, linezolid, and PA-824 against Mycobacterium ulcerans.  Antimicrob Agents Chemother. 2006;  50 1921-1926
  • 30 Chand S, Lusunzi I, Veal D A, Williams L R, Karuso P. Rapid screening of the antimicrobial activity of extracts and natural products.  J Antibiot. 1994;  47 1295-1304
  • 31 Clarke J M, Gillings M R, Altavilla N, Beattie A J. Potential problems with fluorescein diacetate assays of cell viability when testing natural products for antimicrobial activity.  J Microbiol Methods. 2001;  46 261-267
  • 32 Franzblau S G, Witzig R S, McLaughlin J C, Torres P, Madico G, Hernandez A, Degnan M T, Cook M B, Quenzer V K, Ferguson R M, Gilman R H. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay.  J Clin Microbiol. 1998;  36 362-366
  • 33 Collins L, Franzblau S G. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium.  Antimicrob Agents Chemother. 1997;  41 1004-1009
  • 34 Palomino J C, Martin A, Camacho M, Guerra H, Swings J, Portaels F. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis.  Antimicrob Agents Chemother. 2002;  46 2720-2722
  • 35 Martin A, Portaels F, Palomino J C. Colorimetric redox-indicator methods for the rapid detection of multidrug resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis.  J Antimicrob Chemother. 2007;  59 175-183
  • 36 Martin A, Camacho M, Portaels F, Palomino J C. Resazurin microtiter assay plate testing of Mycobacterium tuberculosis susceptibilities to second-line drugs: rapid, simple, and inexpensive method.  Antimicrob Agents Chemother. 2003;  47 3616-3619
  • 37 Abate G, Mshana R N, Miorner H. Evaluation of a colorimetric assay based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) for rapid detection of rifampicin resistance in Mycobacterium tuberculosis.  Int J Tuberc Lung Dis. 1998;  2 1011-1016
  • 38 Caviedes L, Delgado J, Gilman R H. Tetrazolium microplate assay as a rapid and inexpensive colorimetric method for determination of antibiotic susceptibility of Mycobacterium tuberculosis.  J Clin Microbiol. 2002;  40 1873-1874
  • 39 Foongladda S, Roengsanthia D, Arjrattanakool W, Chuchottaworn C, Chaiprasert A, Franzblau S G. Rapid and simple MTT method for rifampicin and isoniazid susceptibility testing of Mycobacterium tuberculosis.  Int J Tuberc Lung Dis. 2002;  6 1118-1122
  • 40 Gordien A Y, Gray A I, Franzblau S G, Seidel V. Antimycobacterial terpenoids from Juniperus communis L. (Cuppressaceae).  J Ethnopharmacol. 2009;  126 500-505
  • 41 European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) . Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution.  Clin Microbiol Infect. 2003;  9 ix-xv
  • 42 Ncube N S, Afolayan A J, Okoh A I. Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends.  Afr J Biotechnol. 2008;  7 1797-1806

Achille Yemoa

Unité de Formation et de Recherche en Pharmacie
Faculté des Sciences de Santé Université d'Abomey Calavi (UAC)

04 BP 494 Cotonou

Bénin

Phone: +22 9 97 07 82 07

Email: ayemoa@yahoo.fr

    >