Semin Thromb Hemost 2010; 36(2): 175-184
DOI: 10.1055/s-0030-1251502
© Thieme Medical Publishers

Platelets in Regeneration

Konstantinos Stellos1 , Sebastian Kopf2 , Angela Paul1 , Jens U. Marquardt3 , Meinrad Gawaz1 , Johnny Huard2 , Harald F. Langer1
  • 1Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls-Universität Tübingen, Tübingen, Germany
  • 2Department of Orthopedic Surgery, Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
  • 3Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
Further Information

Publication History

Publication Date:
22 April 2010 (online)

ABSTRACT

Platelets, as the first cellular response after disruption of vascular and/or tissue integrity, cover any existing injury within our body. But is the regenerative potential of platelets limited to providing a cellular patch for wounds? This review highlights the recent advance in our understanding of platelets being distinctly regulated and regulating cells that contribute immensely to the healing process from the very initial stage to the late events of tissue regeneration. For instance, the intrinsic actions of platelets as a regenerative cell, the participation of platelets in angiogenic processes, and the interplay of platelets and circulating stem and progenitor cells, as well as potential therapeutic implications, are addressed. Although we are starting to understand the underlying mechanisms connecting platelets to the components of tissue regeneration just mentioned, many aspects remain to be elucidated. The demand to invest research in this area is underscored by the fact that platelets or platelet-derived molecules are already applied in clinical contexts such as connective tissue regeneration, whereas other research fields have largely neglected platelet effects going beyond their participation in the coagulation cascade. Understanding the mechanisms connecting platelets to tissue regeneration, however, will inevitably open novel options in regenerative medicine.

REFERENCES

  • 1 Jackson S P. The growing complexity of platelet aggregation.  Blood. 2007;  109(12) 5087-5095
  • 2 Denis C V, Wagner D D. Platelet adhesion receptors and their ligands in mouse models of thrombosis.  Arterioscler Thromb Vasc Biol. 2007;  27(4) 728-739
  • 3 Ruggeri Z M, Mendolicchio G L. Adhesion mechanisms in platelet function.  Circ Res. 2007;  100(12) 1673-1685
  • 4 Sachs U J, Nieswandt B. In vivo thrombus formation in murine models.  Circ Res. 2007;  100(7) 979-991
  • 5 Langer H F, Gawaz M. Platelet-vessel wall interactions in atherosclerotic disease.  Thromb Haemost. 2008;  99(3) 480-486
  • 6 Franzén L, Dahlquist C. The effect of transforming growth factor-beta on fibroblast cell proliferation in intact connective tissue in vitro.  In Vitro Cell Dev Biol Anim. 1994;  30A(7) 460-463
  • 7 Klein M B, Yalamanchi N, Pham H, Longaker M T, Chang J. Flexor tendon healing in vitro: effects of TGF-beta on tendon cell collagen production.  J Hand Surg [Am]. 2002;  27(4) 615-620
  • 8 Centrella M, McCarthy T L, Canalis E. Transforming growth factor beta is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures from fetal rat bone.  J Biol Chem. 1987;  262(6) 2869-2874
  • 9 Harris S E, Bonewald L F, Harris M A et al.. Effects of transforming growth factor beta on bone nodule formation and expression of bone morphogenetic protein 2, osteocalcin, osteopontin, alkaline phosphatase, and type I collagen mRNA in long-term cultures of fetal rat calvarial osteoblasts.  J Bone Miner Res. 1994;  9(6) 855-863
  • 10 Li Y, Foster W, Deasy B M et al.. Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis.  Am J Pathol. 2004;  164(3) 1007-1019
  • 11 Cavins J A, Farber S, Roy A J. Transfusion of fresh platelet concentrates to adult patients with thrombocytopenia.  Transfusion. 1968;  8(1) 24-27
  • 12 Lowenstein L, Weil P G. The treatment of haemorrhage with platelet preserved blood.  Can Serv Med J. 1956;  12(10) 878-882
  • 13 Matras H. Effect of various fibrin preparations on reimplantations in the rat skin [in German].  Osterr Z Stomatol. 1970;  67(9) 338-359
  • 14 Carreon L Y, Glassman S D, Anekstein Y, Puno R M. Platelet gel (AGF) fails to increase fusion rates in instrumented posterolateral fusions.  Spine (Phila Pa 1976). 2005;  30 E243-E246
  • 15 Everts P A, Devilee R J, Brown Mahoney C et al.. Exogenous application of platelet-leukocyte gel during open subacromial decompression contributes to improved patient outcome. A prospective randomized double-blind study.  Eur Surg Res. 2008;  40(2) 203-210
  • 16 Uggeri J, Belletti S, Guizzardi S et al.. Dose-dependent effects of platelet gel releasate on activities of human osteoblasts.  J Periodontol. 2007;  78(10) 1985-1991
  • 17 de Mos M, van der Windt A E, Jahr H de MM et al. Can platelet-rich plasma enhance tendon repair? A cell culture study.  Am J Sports Med. 2008;  36(6) 1171-1178
  • 18 Kark L R, Karp J M, Davies J E. Platelet releasate increases the proliferation and migration of bone marrow-derived cells cultured under osteogenic conditions.  Clin Oral Implants Res. 2006;  17(3) 321-327
  • 19 Slater M, Patava J, Kingham K, Mason R S. Involvement of platelets in stimulating osteogenic activity.  J Orthop Res. 1995;  13(5) 655-663
  • 20 Gruber R, Kandler B, Fischer M B, Watzek G. Osteogenic differentiation induced by bone morphogenetic proteins can be suppressed by platelet-released supernatant in vitro.  Clin Oral Implants Res. 2006;  17(2) 188-193
  • 21 Sarkar M R, Augat P, Shefelbine S J et al.. Bone formation in a long bone defect model using a platelet-rich plasma-loaded collagen scaffold.  Biomaterials. 2006;  27(9) 1817-1823
  • 22 Dohan Ehrenfest D M, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF).  Trends Biotechnol. 2009;  27(3) 158-167
  • 23 van Hinsbergh V W, Collen A, Koolwijk P. Role of fibrin matrix in angiogenesis.  Ann N Y Acad Sci. 2001;  936 426-437
  • 24 Deasy B M, Lu A, Tebbets J C et al.. A role for cell sex in stem cell-mediated skeletal muscle regeneration: female cells have higher muscle regeneration efficiency.  J Cell Biol. 2007;  177(1) 73-86
  • 25 Anitua E, Sánchez M, Zalduendo M M et al.. Fibroblastic response to treatment with different preparations rich in growth factors.  Cell Prolif. 2009;  42(2) 162-170
  • 26 Virchenko O, Grenegård M, Aspenberg P. Independent and additive stimulation of tendon repair by thrombin and platelets.  Acta Orthop. 2006;  77(6) 960-966
  • 27 Bosch G, van Schie H T, de Groot M W et al.. Effects of platelet-rich plasma on the quality of repair of mechanically induced core lesions in equine superficial digital flexor tendons: a placebo-controlled experimental study.  J Orthop Res. 2009;  28(2) 211-217
  • 28 Schnabel L V, Mohammed H O, Miller B J et al.. Platelet rich plasma (PRP) enhances anabolic gene expression patterns in flexor digitorum superficialis tendons.  J Orthop Res. 2007;  25(2) 230-240
  • 29 Aspenberg P, Virchenko O. Platelet concentrate injection improves Achilles tendon repair in rats.  Acta Orthop Scand. 2004;  75(1) 93-99
  • 30 Mishra A, Pavelko T. Treatment of chronic elbow tendinosis with buffered platelet-rich plasma.  Am J Sports Med. 2006;  34(11) 1774-1778
  • 31 Lesurtel M, Graf R, Aleil B et al.. Platelet-derived serotonin mediates liver regeneration.  Science. 2006;  312(5770) 104-107
  • 32 Myronovych A, Murata S, Chiba M et al.. Role of platelets on liver regeneration after 90% hepatectomy in mice.  J Hepatol. 2008;  49(3) 363-372
  • 33 Carmeliet P. Angiogenesis in health and disease.  Nat Med. 2003;  9(6) 653-660
  • 34 Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration.  Nat Med. 2003;  9(6) 702-712
  • 35 Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates.  Blood Rev. 2009;  23(4) 177-189
  • 36 Langer H F, Gawaz M. Platelets in regenerative medicine.  Basic Res Cardiol. 2008;  103(4) 299-307
  • 37 Gawaz M, Stellos K, Langer H F. Platelets modulate atherogenesis and progression of atherosclerotic plaques via interaction with progenitor and dendritic cells.  J Thromb Haemost. 2008;  6(2) 235-242
  • 38 Kisucka J, Butterfield C E, Duda D G et al.. Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage.  Proc Natl Acad Sci U S A. 2006;  103(4) 855-860
  • 39 Klement G L, Yip T T, Cassiola F et al.. Platelets actively sequester angiogenesis regulators.  Blood. 2009;  113(12) 2835-2842
  • 40 Wartiovaara U, Salven P, Mikkola H et al.. Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation.  Thromb Haemost. 1998;  80(1) 171-175
  • 41 Banks R E, Forbes M A, Kinsey S E et al.. Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from platelets: significance for VEGF measurements and cancer biology.  Br J Cancer. 1998;  77(6) 956-964
  • 42 Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine.  Genes Dev. 2008;  22(10) 1276-1312
  • 43 Li J J, Huang Y Q, Basch R, Karpatkin S. Thrombin induces the release of angiopoietin-1 from platelets.  Thromb Haemost. 2001;  85(2) 204-206
  • 44 O'Reilly M S, Boehm T, Shing Y et al.. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth.  Cell. 1997;  88(2) 277-285
  • 45 Maione T E, Gray G S, Petro J et al.. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides.  Science. 1990;  247(4938) 77-79
  • 46 Perollet C, Han Z C, Savona C, Caen J P, Bikfalvi A. Platelet factor 4 modulates fibroblast growth factor 2 (FGF-2) activity and inhibits FGF-2 dimerization.  Blood. 1998;  91(9) 3289-3299
  • 47 Iruela-Arispe M L, Bornstein P, Sage H. Thrombospondin exerts an antiangiogenic effect on cord formation by endothelial cells in vitro.  Proc Natl Acad Sci U S A. 1991;  88(11) 5026-5030
  • 48 Kopp H G, Hooper A T, Broekman M J et al.. Thrombospondins deployed by thrombopoietic cells determine angiogenic switch and extent of revascularization.  J Clin Invest. 2006;  116(12) 3277-3291
  • 49 Ma L, Elliott S N, Cirino G, Buret A, Ignarro L J, Wallace J L. Platelets modulate gastric ulcer healing: role of endostatin and vascular endothelial growth factor release.  Proc Natl Acad Sci U S A. 2001;  98(11) 6470-6475
  • 50 Ma L, Perini R, McKnight W et al.. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets.  Proc Natl Acad Sci U S A. 2005;  102(1) 216-220
  • 51 Italiano Jr J E, Richardson J L, Patel-Hett S et al.. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released.  Blood. 2008;  111(3) 1227-1233
  • 52 D'Amore P, Shepro D. Stimulation of growth and calcium influx in cultured, bovine, aortic endothelial cells by platelets and vasoactive substances.  J Cell Physiol. 1977;  92(2) 177-183
  • 53 Pipili-Synetos E, Papadimitriou E, Maragoudakis M E. Evidence that platelets promote tube formation by endothelial cells on matrigel.  Br J Pharmacol. 1998;  125(6) 1252-1257
  • 54 Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization.  Cardiovasc Res. 2005;  67(1) 30-38
  • 55 Kim H K, Song K S, Chung J H, Lee K R, Lee S N. Platelet microparticles induce angiogenesis in vitro.  Br J Haematol. 2004;  124(3) 376-384
  • 56 Rhee J S, Black M, Schubert U et al.. The functional role of blood platelet components in angiogenesis.  Thromb Haemost. 2004;  92(2) 394-402
  • 57 Cowan C A, Klimanskaya I, McMahon J et al.. Derivation of embryonic stem-cell lines from human blastocysts.  N Engl J Med. 2004;  350(13) 1353-1356
  • 58 Takahashi K, Tanabe K, Ohnuki M et al.. Induction of pluripotent stem cells from adult human fibroblasts by defined factors.  Cell. 2007;  131(5) 861-872
  • 59 Asahara T, Murohara T, Sullivan A et al.. Isolation of putative progenitor endothelial cells for angiogenesis.  Science. 1997;  275(5302) 964-967
  • 60 Crisan M, Yap S, Casteilla L et al.. A perivascular origin for mesenchymal stem cells in multiple human organs.  Cell Stem Cell. 2008;  3(3) 301-313
  • 61 Zheng B, Cao B, Crisan M et al.. Prospective identification of myogenic endothelial cells in human skeletal muscle.  Nat Biotechnol. 2007;  25(9) 1025-1034
  • 62 Cao B, Zheng B, Jankowski R J et al.. Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential.  Nat Cell Biol. 2003;  5(7) 640-646
  • 63 Sekiguchi H, Ii M, Losordo D W. The relative potency and safety of endothelial progenitor cells and unselected mononuclear cells for recovery from myocardial infarction and ischemia.  J Cell Physiol. 2009;  219(2) 235-242
  • 64 Hristov M, Zernecke A, Liehn E A, Weber C. Regulation of endothelial progenitor cell homing after arterial injury.  Thromb Haemost. 2007;  98(2) 274-277
  • 65 Stellos K, Gawaz M. Platelet interaction with progenitor cells: potential implications for regenerative medicine.  Thromb Haemost. 2007;  98(5) 922-929
  • 66 Stellos K, Gnerlich S, Kraemer B, Lindemann S, Gawaz M. Platelet interaction with progenitor cells: vascular regeneration or inquiry?.  Pharmacol Rep. 2008;  60(1) 101-108
  • 67 Deasy B M, Jankowski R J, Huard J. Muscle-derived stem cells: characterization and potential for cell-mediated therapy.  Blood Cells Mol Dis. 2001;  27(5) 924-933
  • 68 Qu-Petersen Z, Deasy B, Jankowski R et al.. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration.  J Cell Biol. 2002;  157(5) 851-864
  • 69 Payne T R, Oshima H, Sakai T et al.. Regeneration of dystrophin-expressing myocytes in the mdx heart by skeletal muscle stem cells.  Gene Ther. 2005;  12(16) 1264-1274
  • 70 Oshima H, Payne T R, Urish K L et al.. Differential myocardial infarct repair with muscle stem cells compared to myoblasts.  Mol Ther. 2005;  12(6) 1130-1141
  • 71 Okada M, Payne T R, Zheng B et al.. Myogenic endothelial cells purified from human skeletal muscle improve cardiac function after transplantation into infarcted myocardium.  J Am Coll Cardiol. 2008;  52(23) 1869-1880
  • 72 Carr L K, Steele D, Steele S et al.. 1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence.  Int Urogynecol J Pelvic Floor Dysfunct. 2008;  19(6) 881-883
  • 73 Payne T R, Oshima H, Okada M et al.. A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts.  J Am Coll Cardiol. 2007;  50(17) 1677-1684
  • 74 Péault B, Rudnicki M, Torrente Y et al.. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy.  Mol Ther. 2007;  15(5) 867-877
  • 75 Crisan M, Deasy B, Gavina M et al.. Purification and long-term culture of multipotent progenitor cells affiliated with the walls of human blood vessels: myoendothelial cells and pericytes.  Methods Cell Biol. 2008;  86 295-309
  • 76 Collett G D, Canfield A E. Angiogenesis and pericytes in the initiation of ectopic calcification.  Circ Res. 2005;  96(9) 930-938
  • 77 Caplan A I. All MSCs are pericytes?.  Cell Stem Cell. 2008;  3(3) 229-230
  • 78 Langer H F, Stellos K, Steingen C et al.. Platelet derived bFGF mediates vascular integrative mechanisms of mesenchymal stem cells in vitro.  J Mol Cell Cardiol. 2009;  47(2) 315-325
  • 79 Langer H, May A E, Daub K et al.. Adherent platelets recruit and induce differentiation of murine embryonic endothelial progenitor cells to mature endothelial cells in vitro.  Circ Res. 2006;  98(2) e2-e10
  • 80 de Boer H C, Verseyden C, Ulfman L H et al.. Fibrin and activated platelets cooperatively guide stem cells to a vascular injury and promote differentiation towards an endothelial cell phenotype.  Arterioscler Thromb Vasc Biol. 2006;  26(7) 1653-1659
  • 81 Langer H F, May A E, Vestweber D, De Boer H C, Hatzopoulos A K, Gawaz M. Platelet-induced differentiation of endothelial progenitor cells.  Semin Thromb Hemost. 2007;  33(2) 136-143
  • 82 Lev E I, Estrov Z, Aboulfatova K et al.. Potential role of activated platelets in homing of human endothelial progenitor cells to subendothelial matrix.  Thromb Haemost. 2006;  96(4) 498-504
  • 83 Zernecke A, Schober A, Bot I et al.. SDF-1alpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells.  Circ Res. 2005;  96(7) 784-791
  • 84 Möhle R, Bautz F, Rafii S, Moore M A, Brugger W, Kanz L. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1.  Blood. 1998;  91(12) 4523-4530
  • 85 Peled A, Grabovsky V, Habler L et al.. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow.  J Clin Invest. 1999;  104(9) 1199-1211
  • 86 Stellos K, Gawaz M. Platelets and stromal cell-derived factor-1 in progenitor cell recruitment.  Semin Thromb Hemost. 2007;  33(2) 159-164
  • 87 Massberg S, Konrad I, Schürzinger K et al.. Platelets secrete stromal cell-derived factor 1alpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo.  J Exp Med. 2006;  203(5) 1221-1233
  • 88 Stellos K, Langer H, Daub K et al.. Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells.  Circulation. 2008;  117(2) 206-215
  • 89 Jin D K, Shido K, Kopp H G et al.. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes.  Nat Med. 2006;  12(5) 557-567
  • 90 Stellos K, Bigalke B, Langer H et al.. Expression of stromal-cell-derived factor-1 on circulating platelets is increased in patients with acute coronary syndrome and correlates with the number of CD34+ progenitor cells.  Eur Heart J. 2009;  30(5) 584-593
  • 91 Massberg S, Gawaz M, Grüner S et al.. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo.  J Exp Med. 2003;  197(1) 41-49
  • 92 Savage B, Saldívar E, Ruggeri Z M. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor.  Cell. 1996;  84(2) 289-297
  • 93 Daub K, Langer H, Seizer P et al.. Platelets induce differentiation of human CD34+ progenitor cells into foam cells and endothelial cells.  FASEB J. 2006;  20(14) 2559-2561
  • 94 Prokopi M, Pula G, Mayr U et al.. Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures.  Blood. 2009;  114(3) 723-732
  • 95 Hill J M, Zalos G, Halcox J P et al.. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk.  N Engl J Med. 2003;  348(7) 593-600
  • 96 Werner N, Kosiol S, Schiegl T et al.. Circulating endothelial progenitor cells and cardiovascular outcomes.  N Engl J Med. 2005;  353(10) 999-1007
  • 97 Angiolillo D J, Fernandez-Ortiz A, Bernardo E et al.. Platelet function profiles in patients with type 2 diabetes and coronary artery disease on combined aspirin and clopidogrel treatment.  Diabetes. 2005;  54(8) 2430-2435
  • 98 Gawaz M, Neumann F J, Ott I, May A, Schömig A. Platelet activation and coronary stent implantation. Effect of antithrombotic therapy.  Circulation. 1996;  94(3) 279-285
  • 99 Dernbach E, Randriamboavonjy V, Fleming I, Zeiher A M, Dimmeler S, Urbich C. Impaired interaction of platelets with endothelial progenitor cells in patients with cardiovascular risk factors.  Basic Res Cardiol. 2008;  103(6) 572-581
  • 100 Möhle R, Green D, Moore M A, Nachman R L, Rafii S. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets.  Proc Natl Acad Sci U S A. 1997;  94(2) 663-668
  • 101 McLaren K M. Immunohistochemical localisation of thrombospondin in human megakaryocytes and platelets.  J Clin Pathol. 1983;  36(2) 197-199
  • 102 Brunner G, Nguyen H, Gabrilove J, Rifkin D B, Wilson E L. Basic fibroblast growth factor expression in human bone marrow and peripheral blood cells.  Blood. 1993;  81(3) 631-638
  • 103 McLaren K M, Pepper D S. Immunological localisation of beta-thromboglobulin and platelet factor 4 in human megakaryocytes and platelets.  J Clin Pathol. 1982;  35(11) 1227-1231
  • 104 Jurasz P, Santos-Martinez M J, Radomska A, Radomski M W. Generation of platelet angiostatin mediated by urokinase plasminogen activator: effects on angiogenesis.  J Thromb Haemost. 2006;  4(5) 1095-1106
  • 105 Kaplan D R, Chao F C, Stiles C D, Antoniades H N, Scher C D. Platelet alpha granules contain a growth factor for fibroblasts.  Blood. 1979;  53(6) 1043-1052
  • 106 Ben-Ezra J, Sheibani K, Hwang D L, Lev-Ran A. Megakaryocyte synthesis is the source of epidermal growth factor in human platelets.  Am J Pathol. 1990;  137(4) 755-759
  • 107 Villeneuve J, Block A, Le Bousse-Kerdilès M C et al.. Tissue inhibitors of matrix metalloproteinases in platelets and megakaryocytes: a novel organization for these secreted proteins.  Exp Hematol. 2009;  37(7) 849-856
  • 108 Karey K P, Sirbasku D A. Human platelet-derived mitogens. II. Subcellular localization of insulinlike growth factor I to the alpha-granule and release in response to thrombin.  Blood. 1989;  74(3) 1093-1100
  • 109 English D, Welch Z, Kovala A T et al.. Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis.  FASEB J. 2000;  14(14) 2255-2265

Konstantinos StellosM.D. 

Medizinische Klinik III, Kardiologie und Kreislauferkrankungen

Eberhard Karls-Universität Tübingen, Tübingen, Germany

Email: konstantinos.stellos@med.uni-tuebingen.de

Harald F LangerM.D. 

Medizinische Klinik III, Kardiologie und Kreislauferkrankungen

Eberhard Karls-Universität Tübingen, 72076 Tubingen, Germany

Email: harald.langer@med.uni-tuebingen.de

    >