Int J Sports Med 2010; 31(8): 561-566
DOI: 10.1055/s-0030-1254083
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Environmental Temperature and Glycogen Resynthesis

M. Naperalsky2 , B. Ruby1 , 2 , D. Slivka1
  • 1University of Montana, Montana Center For Work Physiology and Exercise Metabolism, Missoula, United States
  • 2University of Montana, Health and Human Performance, Missoula, United States
Further Information

Publication History

accepted after revision April 01, 2010

Publication Date:
12 May 2010 (online)

Abstract

This study investigated the effects of hot (H) and room temperature (RT) recovery environments on glycogen resynthesis. Nine male participants completed two trials, cycling for 1 h in a temperature-controlled chamber (32.6°C), followed by 4 h of recovery at 32.6°C (H) or 22.2°C (RT). Rectal temperature was continuously recorded. A carbohydrate beverage (1.8 g/kg bodyweight) was supplied at 0 and 2 h post-exercise. Muscle biopsies were taken immediately, 2 h, and 4 h post-exercise for glycogen analysis. Blood samples were taken at 30, 60, 120, 150, 180, and 240 min into recovery for glucose and insulin analysis. Expired gas was collected at 105 min and 225 min into recovery to calculate whole body carbohydrate oxidation. Average core temperature, whole body carbohydrate oxidation, and serum glucose at 120, 150, 180 and 240 min was higher in H compared to RT (p<0.05). Muscle glycogen was higher in RT vs. H at 4 h (105±28 vs. 88±24 mmol·kg−1 wet weight, respectively; p<0.05), but no different at 0 and 2 h. There was no difference in serum insulin. These data indicate the importance of minimizing the exposure to heat after exercise to improve recovery, specifically to improve glycogen resynthesis.

References

  • 1 Bergström J, Hermansen L, Hultman E, Saltin B. Diet, muscle glycogen and physical performance.  Acta Physiol Scand. 1967;  71 140-150
  • 2 Casey A, Mann R, Banister K, Fox J, Morris PG, MacDonald IA, Greenhaff PL. Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle, measured by 13C MRS.  Am J Physiol. 2000;  278 E65-E75
  • 3 Castellani JW, Delany JP, O’Brien C, Hoyt RW, Santee WR, Young AJ. Energy expenditure in men and women during 54 h of exercise and caloric deprivation.  Med Sci Sports Exerc. 2006;  38 894-900
  • 4 Claremont A, Nagle F, Reddan W, Brooks G. Comparison of metabolic, temperature, heart rate and ventilatory responses to exercise at extreme ambient temperatures (0° and 35°C.  Med Sci Sports Exerc. 1975;  7 150-154
  • 5 Craig JW, Larner J. Influence of epinephrine and insulin on uridine diphosphate glucose-alpha-glucan transferase and phosphorylase in muscle.  Nature. 1964;  202 971-973
  • 6 Danforth WH. Glycogen synthetase activity in skeletal muscle.  J Biol Chem. 1965;  240 588-593
  • 7 Evans WJ, Phinney SD, Young VR. Suction applied to a muscle biopsy maximizes sample size.  Med Sci Sports Exerc. 1982;  14 101-102
  • 8 Febbraio MA, Carey M, Snow R, Stathis C, Hargreaves M. Influence of elevated muscle temperature on metabolism during intense, dynamic exercise.  Am J Physiol. 1996;  271 R1251-R1255
  • 9 Febbraio MA, Snow R, Stathis C, Hargreaves M, Carey M. Effect of heat stress on muscle energy metabolism during exercise.  J Appl Physiol. 1994;  77 2827-2831
  • 10 Fink WJ, Costill DL, Van Handel PJ. Leg muscle metabolism during exercise in the heat and cold.  Eur J Appl Physiol. 1975;  34 183-190
  • 11 Goldman HI, Becklake MR. Respiratory function tests; normal values at median altitudes and the prediction of normal results.  Am Rev Tuberc. 1959;  79 457-467
  • 12 Gollnick P, Armstrong R, Saubert IV C, Sembrowich W, Shepherd R, Saltin B. Glycogen depletion patterns in human skeletal muscle fibers during prolonged work.  Eur J Appl Physiol. 1973;  344 1-12
  • 13 Greiwe JS, Hickner RC, Hansen PA, Racette SB, Chen MM, Holloszy JO. Effects of endurance exercise training on muscle glycogen accumulation in humans.  J Appl Physiol. 1999;  87 222-226
  • 14 Hansen PA, Nolte LA, Chen MM, Holloszy JO. Increased GLUT-4 translocation mediates enhanced insulin sensitivity of muscle glucose transport after exercise.  J Appl Physiol. 1998;  85 1218-1222
  • 15 Hargreaves M, Angus D, Howlett K, Conus NM, Febbraio M. Effect of heat stress on glucose kinetics during exercise.  J Appl Physiol. 1996;  81 1594-1597
  • 16 Harris DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards of Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 17 Hermansen L, Hultman E, Saltin B. Muscle glycogen during prolonged severe exercise.  Acta Physiol Scand. 1967;  71 129-139
  • 18 Hutson NJ, Brumley FT, Assimacopoulous FD, Harper SC, Exton JH. Studies on the alpha-adrenergic activation of hepatic glucose output. I. Studies on the alpha-adrenergic activation of phosphorylase and gluconeogenesis and inactivation of glycogen synthase in isolated rat liver parenchymal cells.  J Biol Chem. 1976;  251 5200-5208
  • 19 Ivy JL, Goforth J, Harold W, Damon BM, McCauley TR, Parsons EC, Price TB. Early postexercise glycogen recovery is enhanced with a carbohydrate-protein supplement.  J Appl Physiol. 2002;  93 1337-1344
  • 20 Ivy JL, Katz AL, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion.  J Appl Physiol. 1988;  64 1480-1485
  • 21 Ivy JL, Lee MC, Brozinick Jr JT, Reed MJ. Muscle glycogen storage after different amounts of carbohydrate ingestion.  J Appl Physiol. 1988;  65 2018-2023
  • 22 Jentjens RL, van Loon LJ, Mann CH, Wagenmakers AJ, Jeukendrup AE. Addition of protein and amino acids to carbohydrates does not enhance postexercise muscle glycogen synthesis.  J Appl Physiol. 2001;  91 839-846
  • 23 Jentjens RL, Venables MC, Jeukendrup AE. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise.  J Appl Physiol. 2004;  96 1285-1291
  • 24 Jentjens RL, Wagenmakers AJ, Jeukendrup AE. Heat stress increases muscle glycogen use but reduces the oxidation of ingested carbohydrates during exercise.  J Appl Physiol. 2002;  92 1562-1572
  • 25 Jeukendrup AE, Wallis GA. Measurements of substrate oxidation during exercise by means of gas exchange measurements.  Int J Sports Med. 2005;  26 S28-S37
  • 26 Nadel ER, Cafarelli E, Roberts MF, Wenger C. Circulatory regulation during exercise in different ambient temperatures.  J Appl Physiol. 1979;  46 430-437
  • 27 Neufer PD, Sawka MN, Young AJ, Quigley MD, Latzka WA, Levine L. Hypohydration does not impair skeletal muscle glycogen resynthesis after exercise.  J Appl Physiol. 1991;  70 1490-1494
  • 28 Nielsen JN, Richter EA. Regulation of glycogen synthase in skeletal muscle during exercise.  Acta Physiol Scand. 2003;  178 309-319
  • 29 Preussner J, Kirschbaum C, Meinlschmid G, Hellhammer D. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change.  Psychoneuroendocrinology. 2003;  916-931
  • 30 Price T, Rothman D, Taylor R, Avison M, Shulman G, Shulman R. Human muscle glycogen resynthesis after exercise; insulin-dependent and -indepent phases.  J Appl Physiol. 1994;  76 104-111
  • 31 Reed MJ, Brozinick Jr JT, Lee M, Ivy J. Muscle glycogen storage postexercise; effect of mode of carbohydrate administration.  J Appl Physiol. 1989;  66 720-726
  • 32 Ren J-M, Semenkovich CF, Gulve EA, Gao J, Holloszy J. Exercise induces rapid increases if GLUT-4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle.  J Biol Chem. 1994;  269 14396-14401
  • 33 Rowell LB, Brengelmann GL, Blackmon JR, Twiss RD, Kusumi F. Splanchnic blood flow and metabolism in heat-stressed man.  J Appl Physiol. 1968;  24 475-484
  • 34 Ruby BC, Gaskill SE, Slivka DR, Harger SG. The addition of fenugreek extract (trigonella foenum-graecum) to glucose feeding increases muscle glycogen resynthesis after exercise.  Amino Acids. 2005;  28 71-76
  • 35 Ruby BC, Shriver TC, Zderic TW, Sharkey BJ, Burks C, Tysk S. Total energy expenditure during arduous wildfire suppression.  Med Sci Sports Exerc. 2002;  34 1048-1054
  • 36 Siri WE. Body composition from fluid spaces and density: analysis of methods.  Nutrition. 1993;  9 480-491 discussion 480, 492
  • 37 Starkie R, Hargreaves M, Lambert D, Proietto J, Febbraio M. Effect of temperature on muscle metabolism during submaximal exercise in humans.  Exp Physiol. 1999;  84 775-784
  • 38 Starkie RL, Hargreaves M, Rolland J, Febbraio MA. Heat stress, cytokines, and the immune response to exercise.  Brain Behav Immun. 2005;  19 404-412
  • 39 Thorell A, Hirshman MF, Nygren J, Jorfeldt L, Wojtaszewski JF, Dufresne SD, Horton ES, LjungqvistI O, Goodyear LJ. Exercise and insulin cause GLUT-4 translocation in human skeletal muscle.  Am J Physiol. 1999;  277 E733-E741

Correspondence

Dr. Brent Ruby

The University of Montana

Montana Center for Work Physiology

and Exercise Metabolism

32 Campus Drive

59812 Missoula

United States

Phone: + 1/406/243 2117

Fax: + 1/406/243 6252

Email: brent.ruby@mso.umt.edu

    >