Pneumologie 2011; 65(3): 149-158
DOI: 10.1055/s-0030-1255913
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Die Rolle neuer „pro-resolving” Lipidmediatoren bei entzündlichen Lungenerkrankungen

Pro-Resolving Lipid Mediators in Inflammatory Lung DiseasesO.  Eickmeier1 , J.  N.  Hilberath2 , S.  Zielen1 , O.  Haworth3
  • 1Zentrum für Kinder- und Jugendmedizin, Allergologie, Pneumologie und Mukoviszidose, Klinikum der Johann Wolfgang Goethe- Universität Frankfurt a. M.
  • 2Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
  • 3Department of Internal Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
Further Information

Publication History

eingereicht 20. 9. 2010

akzeptiert nach Revision 14. 10. 2010

Publication Date:
29 November 2010 (online)

Zusammenfassung

Erkrankungen mit unkontrollierter pulmonaler Entzündung stellen eine wesentliche medizinische Herausforderung, aber auch ökonomische Belastung für unsere Gesellschaft dar. Derzeit existieren keine Therapeutika, die diese Art der pathologischen Entzündungen gezielt kontrollieren. Kürzlich wurde eine neue Gruppe von antientzündlichen und proresolutionären Lipidmediatoren entdeckt: Lipoxine, Resolvine, Protektine und Maresine. Diese Lipidmediatoren werden enzymatisch aus den mehrfach ungesättigten Fettsäuren (PUFAs) Arachidonsäure (AA), Docosahexaensäure (DHA) und Eicosapentaensäure (EPA) gebildet, welche seit langem bekannte positive Wirkungen auf diverse Krankheitsverläufe haben können. Diese neuen Lipidmediatoren zeigen in vitro und in vivo in murinen pulmonalen Entzündungsmodellen vielversprechende antiinflammatorische Wirkungen und könnten eine entscheidende Rolle in der Therapie von vielen entzündlichen Lungenerkrankungen, wie z. B. des Asthmas bronchiale, der cystischen Fibrose (CF) und des akuten Lungenversagens spielen.

Abstract

Uncontrolled inflammation of the lung contributes to the major medical and economic burden on healthcare, and the need for therapeutics to dampen pathological inflammation is largely unmet. Recently, a new genus of anti-inflammatory/ pro-resolving lipid mediators has been identified: Lipoxins, resolvins, protectins and maresins. These compounds are enzymatically derived from the polyunsaturated fatty acids (PUFAs) arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) that have long been known to have beneficial health properties. These mediators have potent anti-inflammatory effects in vitro and in vivo in murine models of lung inflammation. Therefore, this group of compounds carries considerable therapeutic potential for the treatment of many inflammatory lung diseases including asthma, cystic fibrosis and acute lung injury.

Literatur

  • 1 Nathan C, Ding A. Nonresolving inflammation.  Cell. 2010;  140 871-882
  • 2 Serhan C N, Chiang N, Van Dyke T E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators.  Nat Rev Immunol. 2008;  8 349-361
  • 3 Serhan C N, Savill J. Resolution of inflammation: the beginning programs the end.  Nat Immunol. 2005;  6 1191-1197
  • 4 Karp C L, Flick L M, Park K W. et al . Defective lipoxin-mediated anti-inflammatory activity in the cystic fibrosis airway.  Nat Immunol. 2004;  5 388-392
  • 5 Celik G E, Erkekol F O, Misirligil Z, Melli M. Lipoxin A4 levels in asthma: relation with disease severity and aspirin sensitivity.  Clin Exp Allergy. 2007;  37 1494-1501
  • 6 Levy B D, Bonnans C, Silverman E S. et al . Diminished lipoxin biosynthesis in severe asthma.  Am J Respir Crit Care Med. 2005;  172 824-830
  • 7 Tahan F, Saraymen R, Gumus H. The role of lipoxin A4 in exercise-induced bronchoconstriction in asthma.  J Asthma. 2008;  45 161-164
  • 8 Serhan C N, Hamberg M, Samuelsson B. Lipoxins: novel series of biologically active compounds formed from arachidonic acid in human leukocytes.  Proc Natl Acad Sci U S A. 1984;  81 5335-5339
  • 9 Serhan C N, Hamberg M, Samuelsson B. Trihydroxytetraenes: a novel series of compounds formed from arachidonic acid in human leukocytes.  Biochem Biophys Res Commun. 1984;  118 943-949
  • 10 Serhan C N. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways.  Annu Rev Immunol. 2007;  25 101-137
  • 11 Fiore S, Serhan C N. Formation of lipoxins and leukotrienes during receptor-mediated interactions of human platelets and recombinant human granulocyte/macrophage colony-stimulating factor-primed neutrophils.  J Exp Med. 1990;  172 1451-1457
  • 12 Levy B D, Romano M, Chapman H A. et al . Human alveolar macrophages have 15-lipoxygenase and generate 15(S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid and lipoxins.  J Clin Invest. 1993;  92 1572-1579
  • 13 Claria J, Serhan C N. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions.  Proc Natl Acad Sci U S A. 1995;  92 9475-9479
  • 14 Claria J, Lee M H, Serhan C N. Aspirin-triggered lipoxins (15-epi-LX) are generated by the human lung adenocarcinoma cell line (A549)-neutrophil interactions and are potent inhibitors of cell proliferation.  Mol Med. 1996;  2 583-596
  • 15 Planaguma A, Pfeffer M A, Rubin G. et al . Lovastatin decreases acute mucosal inflammation via 15-epi-lipoxin A4.  Mucosal Immunol. 2010;  3 270-279
  • 16 Serhan C N, Fiore S, Brezinski D A, Lynch S. Lipoxin A4 metabolism by differentiated HL-60 cells and human monocytes: conversion to novel 15-oxo and dihydro products.  Biochemistry. 1993;  32 6313-6319
  • 17 Serhan C N, Maddox J F, Petasis N A. et al . Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils.  Biochemistry. 1995;  34 14 609-14 615
  • 18 Burr G O, Burr M M. Nutrition classics from The Journal of Biological Chemistry 82: 345 – 67, 1929. A new deficiency disease produced by the rigid exclusion of fat from the diet.  Nutr Rev. 1973;  31 248-249
  • 19 Marchioli R, Barzi F, Bomba E. et al . Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)-Prevenzione.  Circulation. 2002;  105 1897-1903
  • 20 Mickleborough T D, Lindley M R, Ionescu A A, Fly A D. Protective effect of fish oil supplementation on exercise-induced bronchoconstriction in asthma.  Chest. 2006;  129 39-49
  • 21 Freedman S D, Blanco P G, Zaman M M. et al . Association of cystic fibrosis with abnormalities in fatty acid metabolism.  N Engl J Med. 2004;  350 560-569
  • 22 Serhan C N, Clish C B, Brannon J. et al . Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing.  J Exp Med. 2000;  192 1197-1204
  • 23 Serhan C N, Hong S, Gronert K. et al . Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals.  J Exp Med. 2002;  196 1025-1037
  • 24 Wittamer V, Franssen J D, Vulcano M. et al . Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids.  J Exp Med. 2003;  198 977-985
  • 25 Arita M, Bianchini F, Aliberti J. et al . Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1.  J Exp Med. 2005;  201 713-722
  • 26 Ohira T, Arita M, Omori K. et al . Resolvin E1 receptor activation signals phosphorylation and phagocytosis.  J Biol Chem. 2010;  285 3451-3461
  • 27 Arita M, Ohira T, Sun Y P. et al . Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation.  J Immunol. 2007;  178 3912-3917
  • 28 Hong S, Gronert K, Devchand P R. et al . Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation.  J Biol Chem. 2003;  278 14 677-14 687
  • 29 Serhan C N, Gotlinger K, Hong S. et al . Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes.  J Immunol. 2006;  176 1848-1859
  • 30 Duffield J S, Hong S, Vaidya V S. et al . Resolvin D series and protectin D1 mitigate acute kidney injury.  J Immunol. 2006;  177 5902-5911
  • 31 Sun Y P, Oh S F, Uddin J. et al . Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation.  J Biol Chem. 2007;  282 9323-9334
  • 32 Mattoscio D, Evangelista V, De Cristofaro R. et al . Cystic fibrosis transmembrane conductance regulator (CFTR) expression in human platelets: impact on mediators and mechanisms of the inflammatory response.  FASEB J. 2010;  24 3970-3980
  • 33 Spite M, Norling L V, Summers L. et al . Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis.  Nature. 2009;  461 1287-1291
  • 34 Krishnamoorthy S, Recchiuti A, Chiang N. et al . Resolvin D1 binds human phagocytes with evidence for proresolving receptors.  Proc Natl Acad Sci USA. 2010;  107 1660-1665
  • 35 Marcheselli V L, Hong S, Lukiw W J. et al . Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression.  J Biol Chem. 2003;  278 43 807-43 817
  • 36 Lukiw W J, Cui J G, Marcheselli V L. et al . A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease.  J Clin Invest. 2005;  115 2774-2783
  • 37 Gonzalez-Periz A, Planaguma A, Gronert K. et al . Docosahexaenoic acid (DHA) blunts liver injury by conversion to protective lipid mediators: protectin D1 and 17S-hydroxy-DHA.  FASEB J. 2006;  20 2537-2539
  • 38 Marcheselli V L, Mukherjee P K, Arita M. et al . Neuroprotectin D1/protectin D1 stereoselective and specific binding with human retinal pigment epithelial cells and neutrophils.  Prostaglandins Leukot Essent Fatty Acids. 2010;  82 27-34
  • 39 Serhan C N, Yang R, Martinod K. et al . Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions.  J Exp Med. 2009;  206 15-23
  • 40 Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation.  Nat Rev Immunol. 2010;  10 427-439
  • 41 Holgate S T. The epidemic of allergy and asthma.  Nature. 1999;  402 B2-B4
  • 42 Martinez Molina D, Wetterholm A, Kohl A. et al . Structural basis for synthesis of inflammatory mediators by human leukotriene C4 synthase.  Nature. 2007;  448 613-616
  • 43 Busse W W, Lemanske Jr R F. Asthma.  N Engl J Med. 2001;  344 350-362
  • 44 Vachier I, Bonnans C, Chavis C. et al . Severe asthma is associated with a loss of LX4, an endogenous anti-inflammatory compound.  J Allergy Clin Immunol. 2005;  115 55-60
  • 45 Sanak M, Levy B D, Clish C B. et al . Aspirin-tolerant asthmatics generate more lipoxins than aspirin-intolerant asthmatics.  Eur Respir J. 2000;  16 44-49
  • 46 Bonnans C, Vachier I, Chavis C. et al . Lipoxins are potential endogenous antiinflammatory mediators in asthma.  Am J Respir Crit Care Med. 2002;  165 1531-1535
  • 47 Planaguma A, Kazani S, Marigowda G. et al . Airway lipoxin A4 generation and lipoxin A4 receptor expression are decreased in severe asthma.  Am J Respir Crit Care Med. 2008;  178 574-582
  • 48 Levy B D, Clish C B, Schmidt B. et al . Lipid mediator class switching during acute inflammation: signals in resolution.  Nat Immunol. 2001;  2 612-619
  • 49 Haworth O, Cernadas M, Yang R. et al . Resolvin E1 regulates interleukin 23, interferon-gamma and lipoxin A4 to promote the resolution of allergic airway inflammation.  Nat Immunol. 2008;  9 873-879
  • 50 Lee T H, Crea A E, Gant V. et al . Identification of lipoxin A4 and its relationship to the sulfidopeptide leukotrienes C4, D4, and E4 in the bronchoalveolar lavage fluids obtained from patients with selected pulmonary diseases.  Am Rev Respir Dis. 1990;  141 1453-1458
  • 51 Levy B D, De Sanctis G T, Devchand P R. et al . Multi-pronged inhibition of airway hyper-responsiveness and inflammation by lipoxin A(4).  Nat Med. 2002;  8 1018-1023
  • 52 Christie P E, Spur B W, Lee T H. The effects of lipoxin A4 on airway responses in asthmatic subjects.  Am Rev Respir Dis. 1992;  145 1281-1284
  • 53 Riordan J R, Rommens J M, Kerem B. et al . Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA.  Science. 1989;  245 1066-1073
  • 54 Anderson M P, Gregory R J, Thompson S. et al . Demonstration that CFTR is a chloride channel by alteration of its anion selectivity.  Science. 1991;  253 202-205
  • 55 Brennan S. Innate immune activation and cystic fibrosis.  Paediatr Respir Rev. 2008;  9 271-279; quiz 279 – 280
  • 56 Eickmeier O, Huebner M, Herrmann E. et al . Sputum biomarker profiles in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) and association between pulmonary function.  Cytokine. 2010;  50 152-157
  • 57 Khan T Z, Wagener J S, Bost T. et al . Early pulmonary inflammation in infants with cystic fibrosis.  Am J Respir Crit Care Med. 1995;  151 1075-1082
  • 58 Bonfield T L, Panuska J R, Konstan M W. et al . Inflammatory cytokines in cystic fibrosis lungs.  Am J Respir Crit Care Med. 1995;  152 2111-2118
  • 59 Konstan M W, Walenga R W, Hilliard K A, Hilliard J B. Leukotriene B4 markedly elevated in the epithelial lining fluid of patients with cystic fibrosis.  Am Rev Respir Dis. 1993;  148 896-901
  • 60 Hartl D, Latzin P, Hordijk P. et al . Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease.  Nat Med. 2007;  13 1423-1430
  • 61 Kuo P T, Huang N N, Bassett D R. The fatty acid composition of the serum chylomicrons and adipose tissue of children with cystic fibrosis of the pancreas.  J Pediatr. 1962;  60 394-403
  • 62 Barnes P J. Immunology of asthma and chronic obstructive pulmonary disease.  Nat Rev Immunol. 2008;  8 183-192
  • 63 Martins V, Valenca S S, Farias-Filho F A. et al . ATLa, an aspirin-triggered lipoxin A4 synthetic analog, prevents the inflammatory and fibrotic effects of bleomycin-induced pulmonary fibrosis.  J Immunol. 2009;  182 5374-5381
  • 64 Bernard G R, Artigas A, Brigham K L. et al . The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination.  Am J Respir Crit Care Med. 1994;  149 818-824
  • 65 Wheeler A P, Bernard G R. Acute lung injury and the acute respiratory distress syndrome: a clinical review.  Lancet. 2007;  369 1553-1564
  • 66 Ware L B, Matthay M A. The acute respiratory distress syndrome.  N Engl J Med. 2000;  342 1334-1349
  • 67 Mizgerd J P. Acute lower respiratory tract infection.  N Engl J Med. 2008;  358 716-727
  • 68 Fukunaga K, Kohli P, Bonnans C. et al . Cyclooxygenase 2 plays a pivotal role in the resolution of acute lung injury.  J Immunol. 2005;  174 5033-5039
  • 69 Gilroy D W, Colville-Nash P R, Willis D. et al . Inducible cyclooxygenase may have anti-inflammatory properties.  Nat Med. 1999;  5 698-701
  • 70 Schwartz J, Weiss S T. The relationship of dietary fish intake to level of pulmonary function in the first National Health and Nutrition Survey (NHANES I).  Eur Respir J. 1994;  7 1821-1824
  • 71 Schubert R, Kitz R, Beermann C. et al . Effect of n-3 polyunsaturated fatty acids in asthma after low-dose allergen challenge.  Int Arch Allergy Immunol. 2009;  148 321-329
  • 72 Bettelli E, Oukka M, Kuchroo V K. T(H)-17 cells in the circle of immunity and autoimmunity.  Nat Immunol. 2007;  8 345-350
  • 73 Molet S, Hamid Q, Davoine F. et al . IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines.  J Allergy Clin Immunol. 2001;  108 430-438
  • 74 Park H, Li Z, Yang X O. et al . A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17.  Nat Immunol. 2005;  6 1133-1141
  • 75 Cheung P F, Wong C K, Lam C W. Molecular mechanisms of cytokine and chemokine release from eosinophils activated by IL-17A, IL-17F, and IL-23: implication for Th17 lymphocytes-mediated allergic inflammation.  J Immunol. 2008;  180 5625-5635
  • 76 Gadek J E, DeMichele S J, Karlstad M D. et al . Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Enteral Nutrition in ARDS Study Group.  Crit Care Med. 1999;  27 1409-1420
  • 77 Pacht E R, DeMichele S J, Nelson J L. et al . Enteral nutrition with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants reduces alveolar inflammatory mediators and protein influx in patients with acute respiratory distress syndrome.  Crit Care Med. 2003;  31 491-500
  • 78 Pontes-Arruda A, Aragao A M, Albuquerque J D. Effects of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock.  Crit Care Med. 2006;  34 2325-2333
  • 79 Singer P, Theilla M, Fisher H. et al . Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury.  Crit Care Med. 2006;  34 1033-1038
  • 80 Kang J X, Wang J, Wu L, Kang Z B. Transgenic mice: fat-1 mice convert n-6 to n-3 fatty acids.  Nature. 2004;  427 504
  • 81 Mayer K, Kiessling A, Ott J. et al . Acute lung injury is reduced in fat-1 mice endogenously synthesizing n-3 fatty acids.  Am J Respir Crit Care Med. 2009;  179 474-483
  • 82 Seki H, Fukunaga K, Arita M. et al . The anti-inflammatory and proresolving mediator resolvin E1 protects mice from bacterial pneumonia and acute lung injury.  J Immunol. 2010;  184 836-843
  • 83 Meduri G U, Kohler G, Headley S. et al . Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome.  Chest. 1995;  108 1303-1314
  • 84 Levy B D, Kohli P, Gotlinger K. et al . Protectin D1 is generated in asthma and dampens airway inflammation and hyperresponsiveness.  J Immunol. 2007;  178 496-502
  • 85 Colgan S P, Serhan C N, Parkos C A. et al . Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial monolayers.  J Clin Invest. 1993;  92 75-82
  • 86 Papayianni A, Serhan C N, Brady H R. Lipoxin A4 and B4 inhibit leukotriene-stimulated interactions of human neutrophils and endothelial cells.  J Immunol. 1996;  156 2264-2272
  • 87 Levy B D, Fokin V V, Clark J M. et al . Polyisoprenyl phosphate (PIPP) signaling regulates phospholipase D activity: a ’stop’ signaling switch for aspirin-triggered lipoxin A4.  Faseb J. 1999;  13 903-911
  • 88 Soyombo O, Spur B W, Lee T H. Effects of lipoxin A4 on chemotaxis and degranulation of human eosinophils stimulated by platelet-activating factor and N-formyl-L-methionyl-L-leucyl-L-phenylalanine.  Allergy. 1994;  49 230-234
  • 89 Bandeira-Melo C, Bozza P T, Diaz B L. et al . Cutting edge: lipoxin (LX) A4 and aspirin-triggered 15-epi-LXA4 block allergen-induced eosinophil trafficking.  J Immunol. 2000;  164 2267-2271
  • 90 Ariel A, Chiang N, Arita M. et al . Aspirin-triggered lipoxin A4 and B4 analogs block extracellular signal-regulated kinase-dependent TNF-alpha secretion from human T cells.  J Immunol. 2003;  170 6266-6272
  • 91 Ramstedt U, Serhan C N, Nicolaou K C. et al . Lipoxin A-induced inhibition of human natural killer cell cytotoxicity: studies on stereospecificity of inhibition and mode of action.  J Immunol. 1987;  138 266-270
  • 92 Godson C, Mitchell S, Harvey K. et al . Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages.  J Immunol. 2000;  164 1663-1667
  • 93 Aliberti J, Hieny S, Reis e Sousa C. et al . Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity.  Nat Immunol. 2002;  3 76-82
  • 94 Gewirtz A T, McCormick B, Neish A S. et al . Pathogen-induced chemokine secretion from model intestinal epithelium is inhibited by lipoxin A4 analogs.  J Clin Invest. 1998;  101 1860-1869
  • 95 Brezinski M E, Gimbrone Jr. M A, Nicolaou K C, Serhan C N. Lipoxins stimulate prostacyclin generation by human endothelial cells.  FEBS Lett. 1989;  245 167-172
  • 96 Bonnans C, Fukunaga K, Levy M A, Levy B D. Lipoxin A(4) regulates bronchial epithelial cell responses to acid injury.  Am J Pathol. 2006;  168 1064-1072
  • 97 Campbell E L, Louis N A, Tomassetti S E. et al . Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution.  Faseb J. 2007;  21 3162-3170
  • 98 Schwab J M, Chiang N, Arita M, Serhan C N. Resolvin E1 and protectin D1 activate inflammation-resolution programmes.  Nature. 2007;  447 869-874
  • 99 Haworth O, Cernadas M, Yang R. et al . Resolvin E1 regulates interleukin 23, interferon-gamma and lipoxin A(4) to promote the resolution of allergic airway inflammation.  Nat Immunol. 2008;  9 873-879
  • 100 Ariel A, Fredman G, Sun Y P. et al . Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression.  Nat Immunol. 2006;  7 1209-1216
  • 101 Ariel A, Li P L, Wang W. et al . The docosatriene protectin D1 is produced by TH2 skewing and promotes human T cell apoptosis via lipid raft clustering.  J Biol Chem. 2005;  280 43 079-43 086
  • 102 Bannenberg G L, Chiang N, Ariel A. et al . Molecular circuits of resolution: formation and actions of resolvins and protectins.  J Immunol. 2005;  174 4345-4355
  • 103 Mukherjee P K, Marcheselli V L, Serhan C N, Bazan N G. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress.  Proc Natl Acad Sci U S A. 2004;  101 8491-8496
  • 104 Fiorucci S, Wallace J L, Mencarelli A. et al . A beta-oxidation-resistant lipoxin A4 analog treats hapten-induced colitis by attenuating inflammation and immune dysfunction.  Proc Natl Acad Sci U S A. 2004;  101 15 736-15 741
  • 105 Chiang N, Gronert K, Clish C B. et al . Leukotriene B4 receptor transgenic mice reveal novel protective roles for lipoxins and aspirin-triggered lipoxins in reperfusion.  J Clin Invest. 1999;  104 309-316
  • 106 Fierro I M, Kutok J L, Serhan C N. Novel lipid mediator regulators of endothelial cell proliferation and migration: aspirin-triggered-15R-lipoxin A(4) and lipoxin A(4).  J Pharmacol Exp Ther. 2002;  300 385-392
  • 107 Svensson C I, Zattoni M, Serhan C N. Lipoxins and aspirin-triggered lipoxin inhibit inflammatory pain processing.  J Exp Med. 2007;  204 245-252
  • 108 Serhan C N, Jain A, Marleau S. et al . Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators.  J Immunol. 2003;  171 6856-6865
  • 109 Gronert K, Maheshwari N, Khan N. et al . A role for the mouse 12/15-lipoxygenase pathway in promoting epithelial wound healing and host defense.  J Biol Chem. 2005;  280 15 267-15 278
  • 110 Hasturk H, Kantarci A, Ohira T. et al . RvE1 protects from local inflammation and osteoclast-mediated bone destruction in periodontitis.  Faseb J. 2006;  20 401-403
  • 111 Hasturk H, Kantarci A, Goguet-Surmenian E. et al . Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo.  J Immunol. 2007;  179 7021-7029
  • 112 Connor K M, SanGiovanni J P, Lofqvist C. et al . Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis.  Nat Med. 2007;  13 868-873
  • 113 Arita M, Yoshida M, Hong S. et al . Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis.  Proc Natl Acad Sci U S A. 2005;  102 7671-7676
  • 114 Weylandt K H, Kang J X, Wiedenmann B, Baumgart D C. Lipoxins and resolvins in inflammatory bowel disease.  Inflamm Bowel Dis. 2007;  13 797-799

Dr. med. Olaf Eickmeier

Zentrum für Kinder- und Jugendmedizin
Allergologie, Pneumologie und Mukoviszidose
Klinikum der Johann Wolfgang Goethe-Universität

Theodor-Stern-Kai 7
60590 Frankfurt/Main

Email: olaf.eickmeier@kgu.de

    >