Semin Thromb Hemost 2010; 36(8): 888-906
DOI: 10.1055/s-0030-1267043
© Thieme Medical Publishers

Microparticles in Cancer

Janusz Rak1
  • 1Montreal Children's Hospital Research Institute, McGill University, Montreal, Quebec, Canada
Further Information

Publication History

Publication Date:
03 November 2010 (online)

ABSTRACT

Microparticles (MP) are vesicular structures released from cells upon activation, malignant transformation, stress, or death. MP may be derived from the plasma membrane (shed microvesicles), produced by endosomal pathway (exosomes), or arise from membrane blebs of apoptotic cells. The terms microparticles or microvesicles (MV) are often used as general and interchangeable descriptors of all cellular vesicles, but a more rigorous terminology is still to be established. The cargo of MP/MV consists of proteins, lipids, and nucleic acids (DNA, mRNA, microRNA), all of which may be transferred horizontally between cells. In cancer, oncogenic pathways drive production of MP/MV, and oncoproteins may be incorporated into the cargo of MV (oncosomes). Oncogenic pathways may also stimulate production of MP/MV harboring tissue factor and involved in cancer coagulopathy. In addition, the cargo of MV may include several receptors, antigens, bioactive molecules, and other species capable of stimulating tumor progression, immunotolerance, invasion, angiogenesis, and metastasis. MP emanate not only from tumor cells but also from platelets, endothelium, and inflammatory cells. Indeed, circulating MP/MV harbor molecular information related to cancer-related processes and may serve as a reservoir of prognostic and predictive biomarkers to monitor genetic tumor progression, angiogenesis, thrombosis, and responses to targeted therapeutics.

REFERENCES

  • 1 Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level.  Nat Rev Mol Cell Biol. 2006;  7(7) 505-516
  • 2 Blume-Jensen P, Hunter T. Oncogenic kinase signalling.  Nature. 2001;  411(6835) 355-365
  • 3 Pawson T. Protein modules and signalling networks.  Nature. 1995;  373(6515) 573-580
  • 4 Houghton A M, Rzymkiewicz D M, Ji H et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth.  Nat Med. 2010;  16(2) 219-223
  • 5 Gillette J M, Larochelle A, Dunbar C E, Lippincott-Schwartz J. Intercellular transfer to signalling endosomes regulates an ex vivo bone marrow niche.  Nat Cell Biol. 2009;  11(3) 303-311
  • 6 Aharon A, Brenner B. The role of breast cancer cells microparticles in thrombogenicity following chemotherapy [abstract].  Thromb Res. 2010;  125 S179
  • 7 Małecki J, Wiedłocha A, Wesche J, Olsnes S. Vesicle transmembrane potential is required for translocation to the cytosol of externally added FGF-1.  EMBO J. 2002;  21(17) 4480-4490
  • 8 Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling.  Cell. 1995;  80(2) 225-236
  • 9 Heppner G H. Tumor cell societies.  J Natl Cancer Inst. 1989;  81(9) 648-649
  • 10 Liotta L A, Kohn E C. The microenvironment of the tumour-host interface.  Nature. 2001;  411(6835) 375-379
  • 11 Rak J. Is cancer stem cell a cell, or a multicellular unit capable of inducing angiogenesis?.  Med Hypotheses. 2006;  66(3) 601-604
  • 12 Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak M Z. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication.  Leukemia. 2006;  20(9) 1487-1495
  • 13 Pilzer D, Gasser O, Moskovich O, Schifferli J A, Fishelson Z. Emission of membrane vesicles: roles in complement resistance, immunity and cancer.  Springer Semin Immunopathol. 2005;  27(3) 375-387
  • 14 Davis D M, Sowinski S. Membrane nanotubes: dynamic long-distance connections between animal cells.  Nat Rev Mol Cell Biol. 2008;  9(6) 431-436
  • 15 Sherer N M, Mothes W. Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis.  Trends Cell Biol. 2008;  18(9) 414-420
  • 16 Ahmed K A, Xiang J. Mechanisms of cellular communication through intercellular protein transfer.  J Cell Mol Med. 2010;  (January) 11-[Epub ahead of print]
  • 17 Caumartin J, Lemaoult J, Carosella E D. Intercellular exchanges of membrane patches (trogocytosis) highlight the next level of immune plasticity.  Transpl Immunol. 2006;  17(1) 20-22
  • 18 Al-Nedawi K, Meehan B, Rak J. Microvesicles: messengers and mediators of tumor progression.  Cell Cycle. 2009;  8(13) 2014-2018
  • 19 Johnstone R M. Exosomes biological significance: a concise review.  Blood Cells Mol Dis. 2006;  36(2) 315-321
  • 20 Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more.  Trends Cell Biol. 2009;  19(2) 43-51
  • 21 Takamori S, Holt M, Stenius K et al. Molecular anatomy of a trafficking organelle.  Cell. 2006;  127(4) 831-846
  • 22 Al-Nedawi K, Meehan B, Kerbel R S, Allison A C, Rak J. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR.  Proc Natl Acad Sci U S A. 2009;  106(10) 3794-3799
  • 23 Al-Nedawi K, Meehan B, Micallef J et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells.  Nat Cell Biol. 2008;  10(5) 619-624
  • 24 Yu J L, Rak J W. Shedding of tissue factor (TF)-containing microparticles rather than alternatively spliced TF is the main source of TF activity released from human cancer cells.  J Thromb Haemost. 2004;  2(11) 2065-2067
  • 25 Zwicker J I, Furie B C, Furie B. Cancer-associated thrombosis.  Crit Rev Oncol Hematol. 2007;  62(2) 126-136
  • 26 Aharon A, Brenner B. Microparticles, thrombosis and cancer.  Best Pract Res Clin Haematol. 2009;  22(1) 61-69
  • 27 Diamant M, Tushuizen M E, Sturk A, Nieuwland R. Cellular microparticles: new players in the field of vascular disease?.  Eur J Clin Invest. 2004;  34(6) 392-401
  • 28 Di Vizio D, Kim J, Hager M H et al. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease.  Cancer Res. 2009;  69(13) 5601-5609
  • 29 Tesselaar M E, Romijn F P, Van Der Linden I K, Prins F A, Bertina R M, Osanto S. Microparticle-associated tissue factor activity: a link between cancer and thrombosis?.  J Thromb Haemost. 2007;  5(3) 520-527
  • 30 Burnier L, Fontana P, Kwak B R, Angelillo-Scherrer A. Cell-derived microparticles in haemostasis and vascular medicine.  Thromb Haemost. 2009;  101(3) 439-451
  • 31 Dolo V, D'Ascenzo S, Giusti I, Millimaggi D, Taraboletti G, Pavan A. Shedding of membrane vesicles by tumor and endothelial cells.  Ital J Anat Embryol. 2005;  110(2, Suppl 1) 127-133
  • 32 Chargaff E, West R. The biological significance of the thromboplastic protein of blood.  J Biol Chem. 1946;  166(1) 189-197
  • 33 Wolf P. The nature and significance of platelet products in human plasma.  Br J Haematol. 1967;  13(3) 269-288
  • 34 Dvorak H F, Quay S C, Orenstein N S et al. Tumor shedding and coagulation.  Science. 1981;  212(4497) 923-924
  • 35 Piccin A, Murphy W G, Smith O P. Circulating microparticles: pathophysiology and clinical implications.  Blood Rev. 2007;  21(3) 157-171
  • 36 Valenti R, Huber V, Iero M, Filipazzi P, Parmiani G, Rivoltini L. Tumor-released microvesicles as vehicles of immunosuppression.  Cancer Res. 2007;  67(7) 2912-2915
  • 37 Mayordomo J I, Zorina T, Storkus W J et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity.  Nat Med. 1995;  1(12) 1297-1302
  • 38 Williams R L, Urbé S. The emerging shape of the ESCRT machinery.  Nat Rev Mol Cell Biol. 2007;  8(5) 355-368
  • 39 Simons M, Raposo G. Exosomes—vesicular carriers for intercellular communication.  Curr Opin Cell Biol. 2009;  21(4) 575-581
  • 40 Février B, Raposo G. Exosomes: endosomal-derived vesicles shipping extracellular messages.  Curr Opin Cell Biol. 2004;  16(4) 415-421
  • 41 Houseley J, LaCava J, Tollervey D. RNA-quality control by the exosome.  Nat Rev Mol Cell Biol. 2006;  7(7) 529-539
  • 42 Enjeti A K, Lincz L F, Seldon M. Microparticles in health and disease.  Semin Thromb Hemost. 2008;  34(7) 683-691
  • 43 Lynch S F, Ludlam C A. Plasma microparticles and vascular disorders.  Br J Haematol. 2007;  137(1) 36-48
  • 44 Nazarenko I, Rana S, Baumann A et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation.  Cancer Res. 2010;  70(4) 1668-1678
  • 45 Ratajczak J, Miekus K, Kucia M et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery.  Leukemia. 2006;  20(5) 847-856
  • 46 Del Conde I, Shrimpton C N, Thiagarajan P, López J A. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation.  Blood. 2005;  106(5) 1604-1611
  • 47 Aharon A, Tamari T, Brenner B. Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells.  Thromb Haemost. 2008;  100(5) 878-885
  • 48 Tilley R E, Holscher T, Belani R, Nieva J, Mackman N. Tissue factor activity is increased in a combined platelet and microparticle sample from cancer patients.  Thromb Res. 2008;  122(5) 604-609
  • 49 Castellana D, Zobairi F, Martinez M C et al. Membrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: a role for activated fibroblasts and CX3CL1-CX3CR1 axis.  Cancer Res. 2009;  69(3) 785-793
  • 50 Doeuvre L, Angles-Cano E. Cell-derived microparticles unveil their fibrinolytic and proteolytic function [in French].  Med Sci (Paris). 2009;  25 37-44
  • 51 Wysoczynski M, Ratajczak M Z. Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors.  Int J Cancer. 2009;  125(7) 1595-1603
  • 52 Angelucci A, D'Ascenzo S, Festuccia C et al. Vesicle-associated urokinase plasminogen activator promotes invasion in prostate cancer cell lines.  Clin Exp Metastasis. 2000;  18(2) 163-170
  • 53 Gesierich S, Berezovskiy I, Ryschich E, Zöller M. Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029.  Cancer Res. 2006;  66(14) 7083-7094
  • 54 Janowska-Wieczorek A, Wysoczynski M, Kijowski J et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer.  Int J Cancer. 2005;  113(5) 752-760
  • 55 Deregibus M C, Cantaluppi V, Calogero R et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA.  Blood. 2007;  110(7) 2440-2448
  • 56 Hong B S, Cho J H, Kim H et al. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells.  BMC Genomics. 2009;  10 556
  • 57 Hood J L, Pan H, Lanza G M, Wickline S A. Consortium for Translational Research in Advanced Imaging and Nanomedicine (C-TRAIN) . Paracrine induction of endothelium by tumor exosomes.  Lab Invest. 2009;  89(11) 1317-1328
  • 58 Taraboletti G, D'Ascenzo S, Giusti I et al. Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH.  Neoplasia. 2006;  8(2) 96-103
  • 59 Hao S, Ye Z, Li F et al. Epigenetic transfer of metastatic activity by uptake of highly metastatic B16 melanoma cell-released exosomes.  Exp Oncol. 2006;  28(2) 126-131
  • 60 Jung T, Castellana D, Klingbeil P et al. CD44v6 dependence of premetastatic niche preparation by exosomes.  Neoplasia. 2009;  11(10) 1093-1105
  • 61 Lima L G, Chammas R, Monteiro R Q, Moreira M E, Barcinski M A. Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner.  Cancer Lett. 2009;  283(2) 168-175
  • 62 Skog J, Würdinger T, van Rijn S et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers.  Nat Cell Biol. 2008;  10(12) 1470-1476
  • 63 Andreola G, Rivoltini L, Castelli C et al. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles.  J Exp Med. 2002;  195(10) 1303-1316
  • 64 Liu Y, Xiang X, Zhuang X et al.. Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells.  Am J Pathol. 2010;  176(5) 2490-2499
  • 65 Iero M, Valenti R, Huber V et al. Tumour-released exosomes and their implications in cancer immunity.  Cell Death Differ. 2008;  15(1) 80-88
  • 66 Wolfers J, Lozier A, Raposo G et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming.  Nat Med. 2001;  7(3) 297-303
  • 67 Koga K, Matsumoto K, Akiyoshi T et al. Purification, characterization and biological significance of tumor-derived exosomes.  Anticancer Res. 2005;  25(6A, 6A) 3703-3707
  • 68 Gelderman M P, Simak J. Flow cytometric analysis of cell membrane microparticles.  Methods Mol Biol. 2008;  484 79-93
  • 69 Morel O, Morel N, Freyssinet J M, Toti F. Platelet microparticles and vascular cells interactions: a checkpoint between the haemostatic and thrombotic responses.  Platelets. 2008;  19(1) 9-23
  • 70 Lehmann B D, Paine M S, Brooks A M et al. Senescence-associated exosome release from human prostate cancer cells.  Cancer Res. 2008;  68(19) 7864-7871
  • 71 Bianco F, Perrotta C, Novellino L et al. Acid sphingomyelinase activity triggers microparticle release from glial cells.  EMBO J. 2009;  28(8) 1043-1054
  • 72 Parolini I, Federici C, Raggi C et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells.  J Biol Chem. 2009;  284(49) 34211-34222
  • 73 Park J E, Tan H S, Datta A et al. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes.  Mol Cell Proteomics. 2010;  9 1085-1099
  • 74 Yu J L, May L, Lhotak V et al. Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis.  Blood. 2005;  105(4) 1734-1741
  • 75 Yu X, Harris S L, Levine A J. The regulation of exosome secretion: a novel function of the p53 protein.  Cancer Res. 2006;  66(9) 4795-4801
  • 76 Muralidharan-Chari V, Clancy J, Plou C et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles.  Curr Biol. 2009;  19(22) 1875-1885
  • 77 Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee J J, Lötvall J O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.  Nat Cell Biol. 2007;  9(6) 654-659
  • 78 Simpson R J, Lim J W, Moritz R L, Mathivanan S. Exosomes: proteomic insights and diagnostic potential.  Expert Rev Proteomics. 2009;  6(3) 267-283
  • 79 Sinauridze E I, Kireev D A, Popenko N Y et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets.  Thromb Haemost. 2007;  97(3) 425-434
  • 80 Krishnan L, Sprott G D. Archaeosome adjuvants: immunological capabilities and mechanism(s) of action.  Vaccine. 2008;  26(17) 2043-2055
  • 81 Graner M W, Alzate O, Dechkovskaia A M et al. Proteomic and immunologic analyses of brain tumor exosomes.  FASEB J. 2009;  23(5) 1541-1557
  • 82 Heijnen H F, Schiel A E, Fijnheer R, Geuze H J, Sixma J J. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules.  Blood. 1999;  94(11) 3791-3799
  • 83 Diamandis P, Sacher A G, Tyers M, Dirks P B. New drugs for brain tumors? Insights from chemical probing of neural stem cells.  Med Hypotheses. 2009;  72(6) 683-687
  • 84 Bovellan M, Fritzsche M, Stevens C, Charras G. Death-associated protein kinase (DAPK) and signal transduction: blebbing in programmed cell death.  FEBS J. 2010;  277(1) 58-65
  • 85 Vikkula M, Boon L M, Carraway III K L et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2.  Cell. 1996;  87(7) 1181-1190
  • 86 Ehnfors J, Kost-Alimova M, Persson N L et al. Horizontal transfer of tumor DNA to endothelial cells in vivo.  Cell Death Differ. 2009;  16(5) 749-757
  • 87 Bergsmedh A, Szeles A, Henriksson M et al. Horizontal transfer of oncogenes by uptake of apoptotic bodies.  Proc Natl Acad Sci U S A. 2001;  98(11) 6407-6411
  • 88 Orozco A F, Lewis D E. Flow cytometric analysis of circulating microparticles in plasma.  Cytometry A. 2010;  77(6) 502-514
  • 89 Simak J, Gelderman M P. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers.  Transfus Med Rev. 2006;  20(1) 1-26
  • 90 Bianco F, Pravettoni E, Colombo A et al. Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia.  J Immunol. 2005;  174(11) 7268-7277
  • 91 Schiera G, Proia P, Alberti C, Mineo M, Savettieri G, Di Liegro I. Neurons produce FGF2 and VEGF and secrete them at least in part by shedding extracellular vesicles.  J Cell Mol Med. 2007;  11(6) 1384-1394
  • 92 Mause S F, von Hundelshausen P, Zernecke A, Koenen R R, Weber C. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium.  Arterioscler Thromb Vasc Biol. 2005;  25(7) 1512-1518
  • 93 Bevers E M, Williamson P L. Phospholipid scramblase: an update.  FEBS Lett. 2010;  584(13) 2724-2730
  • 94 Taylor R C, Cullen S P, Martin S J. Apoptosis: controlled demolition at the cellular level.  Nat Rev Mol Cell Biol. 2008;  9(3) 231-241
  • 95 Charras G T, Yarrow J C, Horton M A, Mahadevan L, Mitchison T J. Non-equilibration of hydrostatic pressure in blebbing cells.  Nature. 2005;  435(7040) 365-369
  • 96 Tinevez J Y, Schulze U, Salbreux G, Roensch J, Joanny J F, Paluch E. Role of cortical tension in bleb growth.  Proc Natl Acad Sci U S A. 2009;  106(44) 18581-18586
  • 97 Zimmerberg J, Kozlov M M. How proteins produce cellular membrane curvature.  Nat Rev Mol Cell Biol. 2006;  7(1) 9-19
  • 98 Toth B, Nikolajek K, Rank A et al. Gender-specific and menstrual cycle dependent differences in circulating microparticles.  Platelets. 2007;  18(7) 515-521
  • 99 Madden L A, Vince R V, Sandström M E, Taylor L, McNaughton L, Laden G. Microparticle-associated vascular adhesion molecule-1 and tissue factor follow a circadian rhythm in healthy human subjects.  Thromb Haemost. 2008;  99(5) 909-915
  • 100 Zwaal R F, Comfurius P, Bevers E M. Scott syndrome, a bleeding disorder caused by defective scrambling of membrane phospholipids.  Biochim Biophys Acta. 2004;  1636(2-3) 119-128
  • 101 Zhou Q, Zhao J, Wiedmer T, Sims P J. Normal hemostasis but defective hematopoietic response to growth factors in mice deficient in phospholipid scramblase 1.  Blood. 2002;  99(11) 4030-4038
  • 102 Rak J, Yu J L, Luyendyk J, Mackman N. Oncogenes, Trousseau syndrome, and cancer-related changes in the coagulome of mice and humans.  Cancer Res. 2006;  66(22) 10643-10646
  • 103 Huang X, Bennett M, Thorpe P E. A monoclonal antibody that binds anionic phospholipids on tumor blood vessels enhances the antitumor effect of docetaxel on human breast tumors in mice.  Cancer Res. 2005;  65(10) 4408-4416
  • 104 Trajkovic K, Hsu C, Chiantia S et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes.  Science. 2008;  319(5867) 1244-1247
  • 105 Murphy J E, Padilla B E, Hasdemir B, Cottrell G S, Bunnett N W. Endosomes: a legitimate platform for the signaling train.  Proc Natl Acad Sci U S A. 2009;  106(42) 17615-17622
  • 106 Hegmans J P, Gerber P J, Lambrecht B N. Exosomes.  Methods Mol Biol. 2008;  484 97-109
  • 107 Zöller M. Tetraspanins: push and pull in suppressing and promoting metastasis.  Nat Rev Cancer. 2009;  9(1) 40-55
  • 108 Poliakov A, Spilman M, Dokland T, Amling C L, Mobley J A. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen.  Prostate. 2009;  69(2) 159-167
  • 109 Sanderson M P, Keller S, Alonso A, Riedle S, Dempsey P J, Altevogt P. Generation of novel, secreted epidermal growth factor receptor (EGFR/ErbB1) isoforms via metalloprotease-dependent ectodomain shedding and exosome secretion.  J Cell Biochem. 2008;  103(6) 1783-1797
  • 110 Milsom C C, Yu J L, Mackman N et al. Tissue factor regulation by epidermal growth factor receptor and epithelial-to-mesenchymal transitions: effect on tumor initiation and angiogenesis.  Cancer Res. 2008;  68(24) 10068-10076
  • 111 Marzesco A M, Janich P, Wilsch-Bräuninger M et al. Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells.  J Cell Sci. 2005;  118(Pt 13) 2849-2858
  • 112 Hron G, Kollars M, Weber H et al. Tissue factor-positive microparticles: cellular origin and association with coagulation activation in patients with colorectal cancer.  Thromb Haemost. 2007;  97(1) 119-123
  • 113 Mack M, Kleinschmidt A, Brühl H et al. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection.  Nat Med. 2000;  6(7) 769-775
  • 114 Iwamura M, di Sant'Agnese P A, Wu G et al. Immunohistochemical localization of parathyroid hormone-related protein in human prostate cancer.  Cancer Res. 1993;  53(8) 1724-1726
  • 115 Monleón I, Martínez-Lorenzo M J, Monteagudo L et al. Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells.  J Immunol. 2001;  167(12) 6736-6744
  • 116 Kim J W, Wieckowski E, Taylor D D, Reichert T E, Watkins S, Whiteside T L. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes.  Clin Cancer Res. 2005;  11(3) 1010-1020
  • 117 Huber V, Fais S, Iero M et al. Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape.  Gastroenterology. 2005;  128(7) 1796-1804
  • 118 Greco V, Hannus M, Eaton S. Argosomes: a potential vehicle for the spread of morphogens through epithelia.  Cell. 2001;  106(5) 633-645
  • 119 Reya T, Clevers H. Wnt signalling in stem cells and cancer.  Nature. 2005;  434(7035) 843-850
  • 120 Taipale J, Beachy P A. The Hedgehog and Wnt signalling pathways in cancer.  Nature. 2001;  411(6835) 349-354
  • 121 Martínez M C, Larbret F, Zobairi F et al. Transfer of differentiation signal by membrane microvesicles harboring hedgehog morphogens.  Blood. 2006;  108(9) 3012-3020
  • 122 Morel O, Toti F, Morel N, Freyssinet J M. Microparticles in endothelial cell and vascular homeostasis: are they really noxious?.  Haematologica. 2009;  94(3) 313-317
  • 123 Korkut C, Ataman B, Ramachandran P et al. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless.  Cell. 2009;  139(2) 393-404
  • 124 Poupot M, Fournié J J. Spontaneous membrane transfer through homotypic synapses between lymphoma cells.  J Immunol. 2003;  171(5) 2517-2523
  • 125 Dolo V, Ginestra A, Cassarà D et al. Selective localization of matrix metalloproteinase 9, beta1 integrins, and human lymphocyte antigen class I molecules on membrane vesicles shed by 8701-BC breast carcinoma cells.  Cancer Res. 1998;  58(19) 4468-4474
  • 126 Barry O P, Pratico D, Lawson J A, FitzGerald G A. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles.  J Clin Invest. 1997;  99(9) 2118-2127
  • 127 Rak J, Yu J L, Klement G, Kerbel R S. Oncogenes and angiogenesis: signaling three-dimensional tumor growth.  J Investig Dermatol Symp Proc. 2000;  5(1) 24-33
  • 128 Yu J, May L, Milsom C et al. Contribution of host-derived tissue factor to tumor neovascularization.  Arterioscler Thromb Vasc Biol. 2008;  28(11) 1975-1981
  • 129 Falati S, Liu Q, Gross P et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin.  J Exp Med. 2003;  197(11) 1585-1598
  • 130 Landsverk T, Trevella W, Nicander L. Transfer of carbonic anhydrase-positive particles from the follicle-associated epithelium to lymphocytes of Peyer's patches in foetal sheep and lambs.  Cell Tissue Res. 1990;  261(2) 239-247
  • 131 Liu R, Klich I, Ratajczak J, Ratajczak M Z, Zuba-Surma E K. Erythrocyte-derived microvesicles may transfer phosphatidylserine to the surface of nucleated cells and falsely ‘mark’ them as apoptotic.  Eur J Haematol. 2009;  83(3) 220-229
  • 132 Milsom C, Magnus N, Meehan B, Al-Nedawi K, Garnier D, Rak J. Tissue factor and cancer stem cells: is there a linkage?.  Arterioscler Thromb Vasc Biol. 2009;  29(12) 2005-2014
  • 133 Delves G H, Stewart A B, Cooper A J, Lwaleed B A. Prostasomes, angiogenesis, and tissue factor.  Semin Thromb Hemost. 2007;  33(1) 75-79
  • 134 Simpson R J, Jensen S S, Lim J W. Proteomic profiling of exosomes: current perspectives.  Proteomics. 2008;  8(19) 4083-4099
  • 135 Banfi C, Brioschi M, Barcella S et al. Tissue factor induction by protease-activated receptor 1 requires intact caveolin-enriched membrane microdomains in human endothelial cells.  J Thromb Haemost. 2007;  5(12) 2437-2444
  • 136 Mathivanan S, Lim J W, Tauro B J, Ji H, Moritz R L, Simpson R J. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature.  Mol Cell Proteomics. 2010;  9(2) 197-208
  • 137 Choi D S, Lee J M, Park G W et al. Proteomic analysis of microvesicles derived from human colorectal cancer cells.  J Proteome Res. 2007;  6(12) 4646-4655
  • 138 Chen C, Skog J, Hsu C H et al. Microfluidic isolation and transcriptome analysis of serum microvesicles.  Lab Chip. 2010;  10(4) 505-511
  • 139 Thomas G M, Panicot-Dubois L, Lacroix R, Dignat-George F, Lombardo D, Dubois C. Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo.  J Exp Med. 2009;  206(9) 1913-1927
  • 140 Gross P L, Furie B C, Merrill-Skoloff G, Chou J, Furie B. Leukocyte-versus microparticle-mediated tissue factor transfer during arteriolar thrombus development.  J Leukoc Biol. 2005;  78(6) 1318-1326
  • 141 Zhou Z. New phosphatidylserine receptors: clearance of apoptotic cells and more.  Dev Cell. 2007;  13(6) 759-760
  • 142 Park D, Tosello-Trampont A C, Elliott M R et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module.  Nature. 2007;  450(7168) 430-434
  • 143 Nishimori H, Shiratsuchi T, Urano T et al. A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis.  Oncogene. 1997;  15(18) 2145-2150
  • 144 McMahon H T, Kozlov M M, Martens S. Membrane curvature in synaptic vesicle fusion and beyond.  Cell. 2010;  140(5) 601-605
  • 145 Key N S, Chantrathammachart P, Moody P W, Chang J-Y. Membrane microparticles in VTE and cancer.  Thromb Res. 2010;  125(Suppl 2) S80-S83
  • 146 Zwicker J I. Predictive value of tissue factor bearing microparticles in cancer associated thrombosis.  Thromb Res. 2010;  125(Suppl 2) S89-S91
  • 147 Castellana D, Toti F, Freyssinet J M. Membrane microvesicles: macromessengers in cancer disease and progression.  Thromb Res. 2010;  125(Suppl 2) S84-S88
  • 148 Falanga A. Thrombophilia in cancer.  Semin Thromb Hemost. 2005;  31(1) 104-110
  • 149 Rickles F R. Mechanisms of cancer-induced thrombosis in cancer.  Pathophysiol Haemost Thromb. 2006;  35(1–2) 103-110
  • 150 Lee A Y. Cancer and thromboembolic disease: pathogenic mechanisms.  Cancer Treat Rev. 2002;  28(3) 137-140
  • 151 Buller H R, van Doormaal F F, van Sluis G L, Kamphuisen P W. Cancer and thrombosis: from molecular mechanisms to clinical presentations.  J Thromb Haemost. 2007;  5(Suppl 1) 246-254
  • 152 Trousseau A. Phlegmasia alba dolens. 2nd ed. Clinique Medicale de L'Hotel-Dieu de Paris. Paris, France; Bailliere 1865: 654-712
  • 153 Khorana A A, Francis C W, Menzies K E et al. Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer.  J Thromb Haemost. 2008;  6(11) 1983-1985
  • 154 Boccaccio C, Sabatino G, Medico E et al. The MET oncogene drives a genetic programme linking cancer to haemostasis.  Nature. 2005;  434(7031) 396-400
  • 155 Rak J, Klement G. Impact of oncogenes and tumor suppressor genes on deregulation of hemostasis and angiogenesis in cancer.  Cancer Metastasis Rev. 2000;  19(1-2) 93-96
  • 156 Milsom C, Anderson G M, Weitz J I, Rak J. Elevated tissue factor procoagulant activity in CD133-positive cancer cells.  J Thromb Haemost. 2007;  5(12) 2550-2552
  • 157 Tallman M S, Lefèbvre P, Baine R M et al. Effects of all-trans retinoic acid or chemotherapy on the molecular regulation of systemic blood coagulation and fibrinolysis in patients with acute promyelocytic leukemia.  J Thromb Haemost. 2004;  2(8) 1341-1350
  • 158 Russo L, Mandala M, Marchetti A et al. Loss of angiogenic activity and improvement of hemostatic variables in patients with gastrointestinal stromal tumors (GIST) under imatinib therapy: a biological evaluation [abstract].  Thromb Res. 2010;  125 S175
  • 159 Giesen P L, Rauch U, Bohrmann B et al. Blood-borne tissue factor: another view of thrombosis.  Proc Natl Acad Sci U S A. 1999;  96(5) 2311-2315
  • 160 Rauch U, Antoniak S. Tissue factor-positive microparticles in blood associated with coagulopathy in cancer.  Thromb Haemost. 2007;  97(1) 9-10
  • 161 Contrino J, Hair G, Kreutzer D L, Rickles F R. In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease.  Nat Med. 1996;  2(2) 209-215
  • 162 Rak J, Milsom C, Yu J. Tissue factor in cancer.  Curr Opin Hematol. 2008;  15(5) 522-528
  • 163 Kuypers F A, Larkin S K, Emeis J J, Allison A C. Interaction of an annexin V homodimer (Diannexin) with phosphatidylserine on cell surfaces and consequent antithrombotic activity.  Thromb Haemost. 2007;  97(3) 478-486
  • 164 Lacroix R, Sabatier F, Mialhe A et al. Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro.  Blood. 2007;  110(7) 2432-2439
  • 165 Sabatier F, Camoin-Jau L, Anfosso F, Sampol J, Dignat-George F. Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence.  J Cell Mol Med. 2009;  13(3) 454-471
  • 166 Kim C W, Lee H M, Lee T H, Kang C, Kleinman H K, Gho Y S. Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin.  Cancer Res. 2002;  62(21) 6312-6317
  • 167 Kim H K, Song K S, Chung J H, Lee K R, Lee S N. Platelet microparticles induce angiogenesis in vitro.  Br J Haematol. 2004;  124(3) 376-384
  • 168 Rhee J S, Black M, Schubert U et al. The functional role of blood platelet components in angiogenesis.  Thromb Haemost. 2004;  92(2) 394-402
  • 169 Aoki N, Yokoyama R, Asai N et al. Adipocyte-derived microvesicles are associated with multiple angiogenic factors and induce angiogenesis in vivo and in vitro.  Endocrinology. 2010;  151(6) 2567-2576
  • 170 Smalheiser N R. Do neural cells communicate with endothelial cells via secretory exosomes and microvesicles?.  Cardiovasc Psychiatry Neurol. 2009;  , August 3 (Epub ahead of print)
  • 171 Folkman J. Tumor angiogenesis: therapeutic implications.  N Engl J Med. 1971;  285(21) 1182-1186
  • 172 Folkman J. Angiogenesis: an organizing principle for drug discovery?.  Nat Rev Drug Discov. 2007;  6(4) 273-286
  • 173 Ferrara N, Hillan K J, Gerber H P, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer.  Nat Rev Drug Discov. 2004;  3(5) 391-400
  • 174 Browder T, Folkman J, Pirie-Shepherd S. The hemostatic system as a regulator of angiogenesis.  J Biol Chem. 2000;  275(3) 1521-1524
  • 175 Zangari M, Fink L M, Elice F, Zhan F, Adcock D M, Tricot G J. Thrombotic events in patients with cancer receiving antiangiogenesis agents.  J Clin Oncol. 2009;  27(29) 4865-4873
  • 176 Folkman J, Kalluri R. Tumor angiogenesis. In: Kufe DW, Pollock RE, Weichselbaum RR, et al Cancer Medicine. Hamilton, Ontario, Canada; BC Decker 2003: 161-194
  • 177 Carmeliet P. Mechanisms of angiogenesis and arteriogenesis.  Nat Med. 2000;  6(4) 389-395
  • 178 Kerbel R S. Tumor angiogenesis.  N Engl J Med. 2008;  358(19) 2039-2049
  • 179 Carmeliet P, De Smet F, Loges S, Mazzone M. Branching morphogenesis and antiangiogenesis candidates: tip cells lead the way.  Nat Rev Clin Oncol. 2009;  6(6) 315-326
  • 180 Rak J, Kerbel R S. Oncogenes and tumor angiogenesis. In: Rak J Oncogene-Directed Therapies. Totowa, NJ; Humana Press 2003: 171-218
  • 181 Pettersson A, Nagy J A, Brown L F et al. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor.  Lab Invest. 2000;  80(1) 99-115
  • 182 Döme B, Hendrix M J, Paku S, Tóvári J, Tímár J. Alternative vascularization mechanisms in cancer: pathology and therapeutic implications.  Am J Pathol. 2007;  170(1) 1-15
  • 183 Pinedo H M, Verheul H M, D'Amato R J, Folkman J. Involvement of platelets in tumour angiogenesis?.  Lancet. 1998;  352(9142) 1775-1777
  • 184 Klement G L, Yip T T, Cassiola F et al. Platelets actively sequester angiogenesis regulators.  Blood. 2009;  113(12) 2835-2842
  • 185 Varon D, Shai E. Role of platelet-derived microparticles in angiogenesis and tumor progression.  Discov Med. 2009;  8(43) 237-241
  • 186 Thurston G, Noguera-Troise I, Yancopoulos G D. The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth.  Nat Rev Cancer. 2007;  7(5) 327-331
  • 187 Dvorak H F, Dvorak A M, Manseau E J, Wiberg L, Churchill W H. Fibrin gel investment associated with line 1 and line 10 solid tumor growth, angiogenesis, and fibroplasia in guinea pigs. Role of cellular immunity, myofibroblasts, microvascular damage, and infarction in line 1 tumor regression.  J Natl Cancer Inst. 1979;  62(6) 1459-1472
  • 188 Rickles F R, Shoji M, Abe K. The role of the hemostatic system in tumor growth, metastasis, and angiogenesis: tissue factor is a bifunctional molecule capable of inducing both fibrin deposition and angiogenesis in cancer.  Int J Hematol. 2001;  73(2) 145-150
  • 189 Belting M, Ahamed J, Ruf W. Signaling of the tissue factor coagulation pathway in angiogenesis and cancer.  Arterioscler Thromb Vasc Biol. 2005;  25(8) 1545-1550
  • 190 Carmeliet P, Mackman N, Moons L et al. Role of tissue factor in embryonic blood vessel development.  Nature. 1996;  383(6595) 73-75
  • 191 Holash J, Maisonpierre P C, Compton D et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF.  Science. 1999;  284(5422) 1994-1998
  • 192 Millimaggi D, Mari M, D'Ascenzo S et al. Tumor vesicle-associated CD147 modulates the angiogenic capability of endothelial cells.  Neoplasia. 2007;  9(4) 349-357
  • 193 Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization.  Cardiovasc Res. 2005;  67(1) 30-38
  • 194 Mostefai H A, Andriantsitohaina R, Martínez M C. Plasma membrane microparticles in angiogenesis: role in ischemic diseases and in cancer.  Physiol Res. 2008;  57(3) 311-320
  • 195 Tsopanoglou N E, Maragoudakis M E. Role of thrombin in angiogenesis and tumor progression.  Semin Thromb Hemost. 2004;  30(1) 63-69
  • 196 Furnari F B, Fenton T, Bachoo R M et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment.  Genes Dev. 2007;  21(21) 2683-2710
  • 197 Candela M E, Geraci F, Turturici G, Taverna S, Albanese I, Sconzo G. Membrane vesicles containing matrix metalloproteinase-9 and fibroblast growth factor-2 are released into the extracellular space from mouse mesoangioblast stem cells.  J Cell Physiol. 2010;  224(1) 144-151
  • 198 Taverna S, Ghersi G, Ginestra A et al. Shedding of membrane vesicles mediates fibroblast growth factor-2 release from cells.  J Biol Chem. 2003;  278(51) 51911-51919
  • 199 Gibbings D J, Ciaudo C, Erhardt M et al.. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity.  Nature Cell Biol. 2009;  11 1143-1149
  • 200 Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction.  Nat Rev Mol Cell Biol. 2010;  11(4) 252-263
  • 201 Croce C M. Oncogenes and cancer.  N Engl J Med. 2008;  358(5) 502-511
  • 202 Gasser O, Schifferli J A. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis.  Blood. 2004;  104(8) 2543-2548
  • 203 Maass N, Hojo T, Zhang M, Sager R, Jonat W, Nagasaki K. Maspin—a novel protease inhibitor with tumor-suppressing activity in breast cancer.  Acta Oncol. 2000;  39(8) 931-934
  • 204 Minetti G, Ciana A, Balduini C. Differential sorting of tyrosine kinases and phosphotyrosine phosphatases acting on band 3 during vesiculation of human erythrocytes.  Biochem J. 2004;  377(Pt 2) 489-497
  • 205 Coren L V, Shatzer T, Ott D E. CD45 immunoaffinity depletion of vesicles from Jurkat T cells demonstrates that exosomes contain CD45: no evidence for a distinct exosome/HIV-1 budding pathway.  Retrovirology. 2008;  5 64
  • 206 Sbai O, Ferhat L, Bernard A et al. Vesicular trafficking and secretion of matrix metalloproteinases-2, -9 and tissue inhibitor of metalloproteinases-1 in neuronal cells.  Mol Cell Neurosci. 2008;  39(4) 549-568
  • 207 Pérez-Casal M, Downey C, Cutillas-Moreno B, Zuzel M, Fukudome K, Toh C H. Microparticle-associated endothelial protein C receptor and the induction of cytoprotective and anti-inflammatory effects.  Haematologica. 2009;  94(3) 387-394
  • 208 Baj-Krzyworzeka M, Majka M, Pratico D et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells.  Exp Hematol. 2002;  30(5) 450-459
  • 209 Coussens L M, Werb Z. Inflammation and cancer.  Nature. 2002;  420(6917) 860-867
  • 210 Kalas W, Yu J L, Milsom C et al. Oncogenes and angiogenesis: down-regulation of thrombospondin-1 in normal fibroblasts exposed to factors from cancer cells harboring mutant ras.  Cancer Res. 2005;  65(19) 8878-8886
  • 211 Heppner G H. Tumor heterogeneity.  Cancer Res. 1984;  44(6) 2259-2265
  • 212 Mellinghoff I K, Wang M Y, Vivanco I et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors.  N Engl J Med. 2005;  353(19) 2012-2024

Janusz RakM.D. Ph.D. 

Montreal Children's Hospital Research Institute, McGill University

4060 Sainte Catherine West, Montreal, QC H3Z 2Z3, Canada

Email: janusz.rak@mcgill.ca

    >