Horm Metab Res 2010; 42(13): 955-960
DOI: 10.1055/s-0030-1267206
Humans, Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Circulating Reg1α Proteins and Autoantibodies to Reg1α Proteins as Biomarkers of β-Cell Regeneration and Damage in Type 1 Diabetes

E. Astorri1 , 2 , C. Guglielmi2 , M. Bombardieri1 , C. Alessandri3 , R. Buzzetti4 , D. Maggi2 , G. Valesini3 , C. Pitzalis1 , P. Pozzilli2 , 5
  • 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary's School of Medicine and Dentistry, Bart's and The London, London, UK
  • 2Department of Endocrinology and Diabetes, University Campus Bio-Medico, Rome, Italy
  • 3Dipartimento di Clinica e Terapia Medica, Sapienza Università di Roma, Italy
  • 4Department of Clinical Sciences, Sapienza Università di Roma, Polo Pontino, Italy
  • 5Centre of Diabetes, Queen Mary's School of Medicine and Dentistry, Bart's and The London, London, UK
Further Information

Publication History

received 18.05.2010

accepted 09.09.2010

Publication Date:
22 October 2010 (online)

Abstract

Type 1 diabetes is an autoimmune disease where β-cells are in a constant process of death and renewal. Reg genes play a role in β-cells regeneration. Reg proteins may be target of an autoimmune response in type 1 diabetes with consequent production of autoantibodies and failure of regeneration. The objective of this work was to characterize the role of Reg1α proteins and anti-Reg1α antibodies as biomarkers of β-cell regeneration and damage. Serum levels of Reg1α protein were investigated in 87 type 1 diabetic subjects (31 newly diagnosed and 56 long standing), 63 type 2 diabetic subjects, 39 subjects with systemic lupus erythematosus (SLE), a nonpancreatic autoimmune disorder, and 64 healthy subjects. The presence of anti-Reg1α antibodies and correlation with metabolic, immune, and genetic parameters were analyzed in diabetic subjects. Increased levels of Reg1α protein were observed in newly diagnosed (p=0.002), and long standing (p=0.001) type 1 diabetes patients and type 2 diabetic subjects (p<0.001). Anti-Reg1α antibodies were found in 47% of patients with type 1 diabetes. No correlation was found with metabolic, immune, and genetic parameters. Patients with SLE showed no increase in Reg1α protein. We report here for the first time raised serum Reg1α protein in type 1 and type 2 diabetes and anti-Reg1α antibodies in type 1 diabetes. Reg1α levels appear not to be influenced by genetic or metabolic control. These findings allow considering future studies on Reg1α protein and autoantibody as new tools in the evaluation and monitoring of β-cells regeneration and autoimmunity.

References

  • 1 Concannon P, Rich SS, Nepom GT. Genetics of type 1A diabetes.  N Engl J Med. 2009;  360 1646-1654
  • 2 Daneman D. Type 1 diabetes.  Lancet. 2006;  367 847-858
  • 3 Tews D, Lehr S, Hartwig S, Osmers A, Paslack W, Eckel J. Anti-apoptotic action of exendin-4 in INS-1 beta cells: comparative protein pattern analysis of isolated mitochondria.  Horm Metab Res. 2009;  41 294-301
  • 4 Lonyai A, Kodama S, Burger D, Davis M, Faustman DL. The promise of Hox11+ stem cells of the spleen for treating autoimmune diseases.  Horm Metab Res. 2008;  40 137-146
  • 5 Park SY, Bell GI. Noninvasive monitoring of changes in pancreatic beta-cell mass by bioluminescent imaging in MIP-luc transgenic mice.  Horm Metab Res. 2009;  41 1-4
  • 6 Akirav E, Kushner JA, Herold KC. Beta-cell mass and type 1 diabetes: going, going, gone?.  Diabetes. 2008;  57 2883-2888
  • 7 Okamoto H. The Reg gene family and Reg proteins: with special attention to the regeneration of pancreatic beta-cells.  J Hepatobiliary Pancreat Surg. 1999;  6 254-262
  • 8 Watanabe T, Yonemura Y, Yonekura H, Suzuki Y, Miyashita H, Sugiyama K, Moriizumi S, Unno M, Tanaka O, Kondo H. Pancreatic beta-cell replication and amelioration of surgical diabetes by Reg protein.  Proc Natl Acad Sci U S A. 1994;  91 3589-3592
  • 9 Kobayashi S, Akiyama T, Nata K, Abe M, Tajima M, Shervani NJ, Unno M, Matsuno S, Sasaki H, Takasawa S, Okamoto H. Identification of a receptor for reg (regenerating gene) protein, a pancreatic beta-cell regeneration factor.  J Biol Chem. 2000;  275 10723-10726
  • 10 Okamoto H, Takasawa S. Recent advances in the Okamoto model: the CD38-cyclic ADP-ribose signal system and the regenerating gene protein (Reg)-Reg receptor system in beta-cells.  Diabetes. 2002;  51 (S 03) S462-S473
  • 11 Dusetti NJ, Frigerio JM, Fox MF, Swallow DM, Dagorn JC, Iovanna JL. Molecular cloning, genomic organization, and chromosomal localization of the human pancreatitis-associated protein (PAP) gene.  Genomics. 1994;  19 108-114
  • 12 Miyashita H, Nakagawara K, Mori M, Narushima Y, Noguchi N, Moriizumi S, Takasawa S, Yonekura H, Takeuchi T, Okamoto H. Human REG family genes are tandemly ordered in a 95-kilobase region of chromosome 2p12.  FEBS Lett. 1995;  377 429-433
  • 13 Nata K, Liu Y, Xu L, Ikeda T, Akiyama T, Noguchi N, Kawaguchi S, Yamauchi A, Takahashi I, Shervani NJ, Onogawa T, Takasawa S, Okamoto H. Molecular cloning, expression and chromosomal localization of a novel human REG family gene, REG III.  Gene. 2004;  340 161-170
  • 14 Sekikawa A, Fukui H, Fujii S, Takeda J, Nanakin A, Hisatsune H, Seno H, Takasawa S, Okamoto H, Fujimori T, Chiba T. REG Ialpha protein may function as a trophic and/or anti-apoptotic factor in the development of gastric cancer.  Gastroenterology. 2005;  128 642-653
  • 15 Gurr W, Yavari R, Wen L, Shaw M, Mora C, Christa L, Sherwin RS. A Reg family protein is overexpressed in islets from a patient with new-onset type 1 diabetes and acts as T-cell autoantigen in NOD mice.  Diabetes. 2002;  51 339-346
  • 16 Shervani NJ, Takasawa S, Uchigata Y, Akiyama T, Nakagawa K, Noguchi N, Takada H, Takahashi I, Yamauchi A, Ikeda T, Iwamoto Y, Nata K, Okamoto H. Autoantibodies to REG, a beta-cell regeneration factor, in diabetic patients.  Eur J Clin Invest. 2004;  34 752-758
  • 17 Pozzilli P, Mesturino CA, Crino A, Gross TM, Jeng LM, Visalli N. Is the process of beta-cell destruction in type 1 diabetes at time of diagnosis more extensive in females than in males?.  Eur J Endocrinol. 2001;  145 757-761
  • 18 Crino A, Schiaffini R, Manfrini S, Mesturino C, Visalli N, Beretta Anguissola G, Suraci C, Pitocco D, Spera S, Corbi S, Matteoli MC, Patera IP, Manca Bitti ML, Bizzarri C, Pozzilli P. A randomized trial of nicotinamide and vitamin E in children with recent onset type 1 diabetes (IMDIAB IX).  Eur J Endocrinol. 2004;  150 719-724
  • 19 Crino A, Schiaffini R, Ciampalini P, Suraci MC, Manfrini S, Visalli N, Matteoli MC, Patera P, Buzzetti R, Guglielmi C, Spera S, Costanza F, Fioriti E, Pitocco D, Pozzilli P. A two year observational study of nicotinamide and intensive insulin therapy in patients with recent onset type 1 diabetes mellitus.  J Pediatr Endocrinol Metab. 2005;  18 749-754
  • 20 Monetini L, Cavallo MG, Sarugeri E, Sentinelli F, Stefanini L, Bosi E, Thorpe R, Pozzilli P. Cytokine profile and insulin antibody IgG subclasses in patients with recent onset type 1 diabetes treated with oral insulin.  Diabetologia. 2004;  47 1795-1802
  • 21 Pitocco D, Crino A, Di Stasio E, Manfrini S, Guglielmi C, Spera S, Anguissola GB, Visalli N, Suraci C, Matteoli MC, Patera IP, Cavallo MG, Bizzarri C, Pozzilli P. The effects of calcitriol and nicotinamide on residual pancreatic beta-cell function in patients with recent-onset Type 1 diabetes (IMDIAB XI).  Diabet Med. 2006;  23 920-923
  • 22 Power D. Standards of medical care in diabetes.  Diabetes Care. 2006;  29 476 ; author's reply 476–477
  • 23 The American Diabetes Association (ADA). . has been actively involved in the development and dissemination of diabetes care standards, guidelines, and related documents for many years. Introduction.  Diabetes Care. 2009;  32 (S 01) S1-S2
  • 24 Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus.  Arthritis Rheum. 1997;  40 1725
  • 25 Gill JM, Quisel AM, Rocca PV, Walters DT. Diagnosis of systemic lupus erythematosus.  Am Fam Physician. 2003;  68 2179-2186
  • 26 Stejskal D, Lacnak B, Karpisek M, Kaminek M. Our experiences with measurement of new potential biomarkers in the diagnosis of latent forms of myocardial ischemia.  Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2006;  150 239-244
  • 27 Haneji N, Nakamura T, Takio K, Yanagi K, Higashiyama H, Saito I, Noji S, Sugino H, Hayashi Y. Identification of alpha-fodrin as a candidate autoantigen in primary Sjogren's syndrome.  Science. 1997;  276 604-607
  • 28 Wiedmeyer HM, Polonsky KS, Myers GL, Little RR, Greenbaum CJ, Goldstein DE, Palmer JP. International comparison of C-peptide measurements.  Clin Chem. 2007;  53 784-787
  • 29 Todd JA. Etiology of type 1 diabetes.  Immunity. 32 457-467
  • 30 Einarsdottir E, Soderstrom I, Lofgren-Burstrom A, Haraldsson S, Nilsson-Ardnor S, Penha-Goncalves C, Lind L, Holmgren G, Holmberg M, Asplund K, Holmberg D. The CTLA4 region as a general autoimmunity factor: an extended pedigree provides evidence for synergy with the HLA locus in the etiology of type 1 diabetes mellitus, Hashimoto's thyroiditis and Graves’ disease.  Eur J Hum Genet. 2003;  11 81-84
  • 31 Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G, Herr MH, Dahlman I, Payne F, Smyth D, Lowe C, Twells RC, Howlett S, Healy B, Nutland S, Rance HE, Everett V, Smink LJ, Lam AC, Cordell HJ, Walker NM, Bordin C, Hulme J, Motzo C, Cucca F, Hess JF, Metzker ML, Rogers J, Gregory S, Allahabadia A, Nithiyananthan R, Tuomilehto-Wolf E, Tuomilehto J, Bingley P, Gillespie KM, Undlien DE, Ronningen KS, Guja C, Ionescu-Tirgoviste C, Savage DA, Maxwell AP, Carson DJ, Patterson CC, Franklyn JA, Clayton DG, Peterson LB, Wicker LS, Todd JA, Gough SC. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease.  Nature. 2003;  423 506-511
  • 32 Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, MacMurray J, Meloni GF, Lucarelli P, Pellecchia M, Eisenbarth GS, Comings D, Mustelin T. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes.  Nat Genet. 2004;  36 337-338
  • 33 Le Stunff C, Fallin D, Schork NJ, Bougneres P. The insulin gene VNTR is associated with fasting insulin levels and development of juvenile obesity.  Nat Genet. 2000;  26 444-446
  • 34 Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes.  Nat Rev Endocrinol. 2009;  5 219-226
  • 35 Xu X, D’Hoker J, Stange G, Bonne S, De Leu N, Xiao X, Van de Casteele M, Mellitzer G, Ling Z, Pipeleers D, Bouwens L, Scharfmann R, Gradwohl G, Heimberg H. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas.  Cell. 2008;  132 197-207
  • 36 Akiyama T, Takasawa S, Nata K, Kobayashi S, Abe M, Shervani NJ, Ikeda T, Nakagawa K, Unno M, Matsuno S, Okamoto H. Activation of Reg gene, a gene for insulin-producing beta-cell regeneration: poly(ADP-ribose) polymerase binds Reg promoter and regulates the transcription by autopoly(ADP-ribosyl)ation.  Proc Natl Acad Sci U S A. 2001;  98 48-53
  • 37 Halban PA, German MS, Kahn SE, Weir GC. Current status of islet cell replacement and regeneration therapy.  J Clin Endocrinol Metab. 2010;  95 1034-1043
  • 38 Edlund H. Factors controlling pancreatic cell differentiation and function.  Diabetologia. 2001;  44 1071-1079
  • 39 Lencioni C, Lupi R, Del Prato S. Beta-cell failure in type 2 diabetes mellitus.  Curr Diab Rep. 2008;  8 179-184
  • 40 Pan QR, Li WH, Wang H, Sun Q, Xiao XH, Brock B, Schmitz O. Glucose, metformin, and AICAR regulate the expression of G protein-coupled receptor members in INS-1 beta cell.  Horm Metab Res. 2009;  41 799-804

Correspondence

Dr. E. Astorri

Centre for Experimental Medicine and Rheumatology

William Harvey Research Institute

Queen Mary's School of Medicine and Dentistry

Bart's and The London

John Vane Science Centre

Charterhouse Square

London EC1M 6BQ

UK

Phone: +44/2078828193

Phone: +44/7776294772

Fax: +44/2078828250

Email: e.astorri@qmul.ac.uk

    >