Exp Clin Endocrinol Diabetes 2011; 119(6): 370-376
DOI: 10.1055/s-0030-1268413
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Type 2 Diabetes and Lipoprotein Metabolism Affect LPS-Induced Cytokine and Chemokine Release in Primary Human Monocytes

M. Bala1 , A. Kopp1 , S. Wurm1 , C. Büchler1 , J. Schölmerich1 , A. Schäffler1
  • 1Department of Internal Medicine I, Regensburg University Medical Center, Germany
Further Information

Publication History

received 17.08.2010 first decision 11.10.2010

accepted 25.10.2010

Publication Date:
22 November 2010 (online)

Abstract

Aims/Hypothesis: Obesity and insulin resistance are characterized by a chronic and low grade state of inflammation and the pro-inflammatory response of monocytes is affected in type 2 diabetes mellitus (T2D). We aimed to investigate whether LPS-induced monocytic cytokine and chemokine release depends on serum lipoprotein parameters in T2D patients.

Methods: Primary human monocytes were isolated from 29 patients with known T2D and from 20 healthy volunteers. Anthropometric and disease-related parameters such as age, gender, BMI, WHR, diabetes duration, diabetes complications, and diabetes control (HbA1c) were documented. Monocytes were stimulated for 18 h with LPS (1 μg/ml). Unstimulated monocytes served as control. The supernatant concentrations of CCL2, CCL3, CCL4, CCL5, MIF and resistin were measured by ELISA.

Results: LPS-stimulation significantly (p<0.001) increased CCL chemokine and resistin concentrations in healthy controls and in patients with T2D, whereas MIF release was not affected in both groups. LPS-induced CCL2 and resistin concentrations were significantly higher in T2D patients when compared to healthy controls. In T2D patients, LPS-induced CCL3 concentration was higher in males when compared to females (p=0.039) and supernatant resistin concentration upon stimulation with LPS showed a significant and positive correlation with age (r=0.6; p=0.001). LPS-induced CCL2 concentration was significantly and positively correlated with serum triglyceride concentration (r=0.4; p=0.009) in T2D patients. Furthermore, LPS-induced CCL4 concentration was significantly and positively correlated with total (r=0.4; p=0.035) and LDL cholesterol (r=0.4; p=0.033) concentration.

Conclusions: LPS responsiveness of monocytes is altered in T2D and is affected by the respective serum lipoprotein metabolism.

References

  • 1 Weisberg SP, Hunter D, Huber R. et al . CCR2 modulates inflammatory and metabolic effects of high-fat feeding.  J Clin Invest. 2006;  116 115-124
  • 2 Lehrke M, Lazar MA. Inflamed about obesity.  Nat Med. 2004;  10 126-127
  • 3 Xu H, Barnes GT, Yang Q. et al . Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance.  J Clin Invest. 2003;  112 1821-1830
  • 4 Neels JG, Olefsky JM. Inflamed fat: what starts the fire?.  J Clin Invest. 2006;  116 33-35
  • 5 Schaffler A, Muller-Ladner U, Scholmerich J. et al . Role of adipose tissue as an inflammatory organ in human diseases.  Endocr Rev. 2006;  27 449-467
  • 6 Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue.  J Clin Invest. 2003;  112 1785-1788
  • 7 Dahlman I, Kaaman M, Olsson T. et al . A unique role of monocyte chemoattractant protein 1 among chemokines in adipose tissue of obese subjects.  J Clin Endocrinol Metab. 2005;  90 5834-5840
  • 8 Kanda H, Tateya S, Tamori Y. et al . MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity.  J Clin Invest. 2006;  116 1494-1505
  • 9 Pataky Z, Bobbioni-Harsch E, Golay A. Obesity: a complex growing challenge.  Exp Clin Endocrinol Diabetes. 2010;  118 427-433
  • 10 Schlienger JL, Pradignac A, Vinzio S. et al . Hyperglycemia in the critically ill: meaning and treatment.  Presse Med. 2009;  38 562-570
  • 11 Muller B. Endocrine aspects of critical illness.  Ann Endocrinol (Paris). 2007;  68 290-298
  • 12 Hickman MS, Schwesinger WH, Page CP. Acute cholecystitis in the diabetic. A case-control study of outcome.  Arch Surg. 1988;  123 409-411
  • 13 Fantuzzi G. Adipose tissue, adipokines, and inflammation.  J Allergy Clin Immunol. 2005;  115 911-919 quiz 920
  • 14 Lue H, Kleemann R, Calandra T. et al . Macrophage migration inhibitory factor (MIF): mechanisms of action and role in disease.  Microbes Infect. 2002;  4 449-460
  • 15 Kleemann R, Bucala R. Macrophage migration inhibitory factor: critical role in obesity, insulin resistance, and associated comorbidities.  Mediators Inflamm. 2010;  610479
  • 16 Steppan CM, Lazar MA. The current biology of resistin.  J Intern Med. 2004;  255 439-447
  • 17 Kopp A, Gross P, Falk W. et al . Fatty acids as metabolic mediators in innate immunity.  Eur J Clin Invest. 2009;  39 924-933
  • 18 Qatanani M, Szwergold NR, Greaves DR. et al . Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice.  J Clin Invest. 2009; 
  • 19 Stogbauer F, Neumeier M, Weigert J. et al . Highly efficient and low-cost method to isolate human blood monocytes with high purity.  J Immunol Methods. 2008;  337 78-80
  • 20 Schmidt-Supprian M, Murphy C, While B. et al . Activated protein C inhibits tumor necrosis factor and macrophage migration inhibitory factor production in monocytes.  Eur Cytokine Netw. 2000;  11 407-413
  • 21 van der Plas MJ, van Dissel JT, Nibbering PH. Maggot secretions skew monocyte-macrophage differentiation away from a pro-inflammatory to a pro-angiogenic type.  PLoS One. 2009;  4 e8071
  • 22 Calandra T, Bernhagen J, Mitchell RA. et al . The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor.  J Exp Med. 1994;  179 1895-1902
  • 23 Hsiao HB, Wu JB, Lin H. et al . Kinsenoside Isolated from Anoectochilus Formosanus Suppresses Lipopolysaccharide-Stimulated Inflammatory Reactions in Macrophages and Endotoxin Shock in Mice.  Shock July 16, epub ahead of print
  • 24 Calandra T. Macrophage migration inhibitory factor and host innate immune responses to microbes.  Scand J Infect Dis. 2003;  35 573-576
  • 25 Flegel WA, Baumstark MW, Weinstock C. et al . Prevention of endotoxin-induced monokine release by human low- and high-density lipoproteins and by apolipoprotein A-I.  Infect Immun. 1993;  61 5140-5146
  • 26 Northoff H, Flegel WA, Yurttas R. et al . The role of lipoproteins in the inactivation of endotoxin by serum.  Infusionsther Transfusionsmed. 1992a;  19 202-203
  • 27 Weinstock C, Ullrich H, Hohe R. et al . Low density lipoproteins inhibit endotoxin activation of monocytes.  Arterioscler Thromb. 1992;  12 341-347
  • 28 Northoff H, Flegel WA, Yurttas R. et al . The role of lipoproteins in inactivation of endotoxin by serum.  Beitr Infusionsther. 1992b;  30 195-197
  • 29 Flegel WA, Wolpl A, Mannel DN. et al . Inhibition of endotoxin-induced activation of human monocytes by human lipoproteins.  Infect Immun. 1989;  57 2237-2245
  • 30 Toso C, Emamaullee JA, Merani S. et al . The role of macrophage migration inhibitory factor on glucose metabolism and diabetes.  Diabetologia. 2008;  51 1937-1946
  • 31 Akesson L, Gelling RW, Jensen R. et al . Increased lipid oxidation heralds diabetes onset in DR.  lyp/lyp rats. Exp Clin Endocrinol Diabetes. 2008;  116 475-480

Correspondence

Prof. Dr. A. SchäfflerMD 

Department of Internal

Medicine I

University Medical Center

D–93042 Regensburg

Germany

Phone: +49/941/944 7009

Fax: +49/941/944 7019

Email: andreas.schaeffler@klinik.uni-regensburg.de

    >