Rofo 2011; 183(12): 1138-1144
DOI: 10.1055/s-0031-1281685
Muskuloskelettales System

© Georg Thieme Verlag KG Stuttgart · New York

MRT-basierte Knorpelvolumetrie nach Kreuzbandersatzplastik in Korrelation mit qualitativen Gelenkveränderungen und dem klinischen Outcome. Gibt es Hinweise auf frühzeitige posttraumatische degenerative Veränderungen?

MRI Based Volumetric Assessment of Knee Cartilage after ACL-Reconstruction, Correlated with Qualitative Morphologic Changes in the Joint and with Clinical Outcome. Is there Evidence for Early Posttraumatic Degeneration?A. P. Arnoldi1 , S. Weckbach1 , C. Nussbickel2 , A. Horng1 , I. Nöbauer3 , S. Zysk4 , M. Reiser1 , C. Glaser5
  • 1Department of Clinical Radiology, Ludwig-Maximilians Universität München
  • 2Department of Internal Medicine, Klinikum Garmisch-Partenkirchen
  • 3Klinik für Radiodiagnostik, Medizinische Universität Wien
  • 4Center of Orthopaedics, Orthopädie Zentrum Gröbenzell
  • 5Department of Radiology, NYU Medical Center
Further Information

Publication History

eingereicht: 17.5.2011

angenommen: 1.8.2011

Publication Date:
28 September 2011 (online)

Zusammenfassung

Ziel: Ziel unserer Pilotstudie war es zu untersuchen, welche quantitativen und qualitativen, auf eine frühe posttraumatische OA-Entstehung hinweisende, Veränderungen des Knieknorpels und -gelenks 4 Jahre nach einer VKB-Ersatzplastik mittels der MRT erfasst werden können und wie diese mit dem klinischen Outcome (CO) korrelieren. Material und Methoden:9 Patienten wurden post-OP und 4 Jahre später bei 1,5 T untersucht. Mittels einer hochauflösenden T 1-w-fs-FLASH-3D-Sequenz erfolgte eine quantitative Bestimmung des Knorpelvolumens (cVol) und der mittleren Knorpeldicke (mTh) des retropatellaren, femoralen und tibialen Gelenkknorpels. Anhand PD-w-fs und T 1-w-fs Sequenzen wurden qualitative Veränderungen der gelenkbildenden Strukturen auf der Basis des WORMS-Score ermittelt. Das CO wurde von einem erfahrenen Orthopäden in folgenden Tests erhoben: Lysholm-Score, OAK-Score, Tegner-Aktivitäts-Score (TAS) und Arthrometer KT-1000-Test. Ergebnisse: Die mittlere Änderung des cVol betrug ca. –1,8 % (range: –5,9 %; + 0,7 %), die der mTh ca. –0,8 % (range: –3,0 %; + 1,1 %). In keinem Kompartiment erwiesen sich die Änderungen als signifikant (95 %-KI). 3 Patienten zeigten neue peripatellare Osteophyten, akute traumaassoziierte Veränderungen waren insgesamt deutlich seltener. CO: Der Lysholm- und OAK-Score betrug im Mittel 90 bzw. 86 Pkt. Der TAS betrug im Mittel 4,3 Pkt. Die mittlere max. tibiale Translation lag bei 5,2 mm (gesunde Gegenseite 6,7 mm). Schlussfolgerung: 4 Jahre nach VKB-Ersatzplastik konnten mit der qMRT im Kniegelenk eine Tendenz hin zu kleineren Werten jedoch keine signifikanten Veränderungen des cVol und der mTh gemessen werden. Neue Osteophyten als morphologische Hinweise auf eine OA korrelierten nicht mit dem überwiegend guten CO. Unserer durch die Kollektivgröße limitierten Studie sollten weitere quantitative und semiquantitative, strukturelle MRT-Untersuchungen des Knorpels und Knochens folgen um die frühzeitige diagnostische Erfassung einer OA-Entstehung weiter voranzutreiben.

Abstract

Purpose: The purpose of this study was to analyze potential quantitative and qualitative changes of the knee cartilage and joint indicative of early posttraumatic OA 4 years after ACL-reconstruction and to correlate the MRI-findings with the clinical outcome (CO). Materials and Methods: 1.5 T MRI-scans were performed on 9 patients post-op and 4 years later. Using a high-resolution T 1-w-fs-FLASH-3D-sequence cartilage volume (cVol) and thickness (mTh) were quantified. Using standard PD-w fs and T 1-w sequences qualitative changes of the joint structures were analyzed based on the WORMS-score. CO was rated by an orthopaedic surgeon using Lysholm-score, OAK-score, Tegner-activity-score (TAS), and Arthrometer KT-1000 testing. Results: Mean changes of cVol were –1.8 % (range: –5.9 %; + 0.7 %) and of mTh –0.8 % (range: –3.0 %; + 1.1 %). No significant change (95 %-CI) could be identified for any compartment. Three patients developed new peripatellar ostheophytes, acute trauma related changes mostly decreased. Mean outcome of Lysholm-score and OAK-score were 90 pts and 86 pts, mean TAS was 4.3 pts. Average maximum tibial translation reached 5.2 mm comparing to 6.7 mm on the healthy contralateral side. Conclusion: Despite a tendency towards decreased cVol and mTh 4 years after ACL-reconstruction qMRI revealed no significant cartilage loss. Newly developing osteophytes did not match with the observed good CO. This small pilot study motivates future quantitative and qualitative-structural MRI-based assessment of articular cartilage and other joint structures in order to improve diagnostic tools for the detection of early OA.

Literatur

  • 1 Fu F H, Bennett C H, Ma C B et al. Current Trends in Anterior Cruciate Ligament Reconstruction.  The American Journal of Sports Medicine. 2000;  28 124-130
  • 2 Cotta H, Niethard F U. Biomechanische und biochemische Grundlagen der Entstehung einer posttraumatischen Arthrose.  Der Chirurg. 1979;  50 595-598
  • 3 Wilder F V, Hall B J, Barrett J P et al. History of acute knee injury and osteoarthritis of the knee: a prospective epidemiological assessment. The Clearwater Osteoarthritis Study.  Osteoarthritis and cartilage. 2002;  10 611-616
  • 4 Lohmander L S, Englund P M, Dahl L L et al. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis.  The American journal of sports medicine. 2007;  35 1756-1769
  • 5 Batiste D L, Kirkley A, Laverty S et al. Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT.  Osteoarthritis and cartilage. 2004;  12 986-996
  • 6 Destatis S B. Krankheitskosten. Fachserie 12.  2010;  Reihe 7.2 45
  • 7 Altman R, Asch E, Bloch D et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association.  Arthritis and rheumatism. 1986;  29 1039-1049
  • 8 Peterfy C G, Guermazi A, Zaim S et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis.  Osteoarthritis and cartilage. 2004;  12 177-190
  • 9 Eckstein F, Glaser C. Measuring cartilage morphology with quantitative magnetic resonance imaging.  Seminars in musculoskeletal radiology. 2004;  8 329-353
  • 10 Link T M, Steinbach L S, Ghosh S et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings.  Radiology. 2003;  226 373-381
  • 11 Eckstein F, Tieschky M, Faber S C et al. Effect of physical exercise on cartilage volume and thickness in vivo: MR imaging study.  Radiology. 1998;  207 243-248
  • 12 Horng A, Raya J, Zscharn M et al. [Locoregional deformation pattern of the patellar cartilage after different loading types – high-resolution 3D-MRI volumetry at 3T in-vivo].  Fortschr Röntgenstr. 2011;  183 432-440
  • 13 Stammberger T, Eckstein F, Michaelis M et al. Interobserver reproducibility of quantitative cartilage measurements: comparison of B-spline snakes and manual segmentation.  Magnetic resonance imaging. 1999;  17 1033-1042
  • 14 Lysholm J, Gillquist J. Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale.  The American journal of sports medicine. 1982;  10 150-154
  • 15 Müller W, Biedert R, Hefti F et al. OAK knee evaluation. A new way to assess knee ligament injuries.  Clinical orthopaedics. 1988;  232 37-50
  • 16 Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries.  Clinical orthopaedics and related research. 1985;  198 43-49
  • 17 Werlich T, Brand H, Echtermeyer V et al. [The knee arthrometer KT-1000: value of instrumental measurement in diagnosis of complex anterior knee instability].  Aktuelle Traumatol. 1993;  23 43-49
  • 18 McKinley T O, Rudert M J, Koos D C et al. Incongruity versus instability in the etiology of posttraumatic arthritis.  Clin Orthop Relat Res. 2004;  423 44-51
  • 19 Andreisek G, White L M, Sussman M S et al. Quantitative MR imaging evaluation of the cartilage thickness and subchondral bone area in patients with ACL-reconstructions 7 years after surgery.  Osteoarthritis Cartilage. 2009;  17 871-878
  • 20 Peterfy C G, Dijke C F, Janzen D L et al. Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging: optimization and validation.  Radiology. 1994;  192 485-491
  • 21 Eckstein van F, Westhoff J, Sittek H et al. In vivo reproducibility of three-dimensional cartilage volume and thickness measurements with MR imaging.  AJR American journal of roentgenology. 1998;  170 593-597
  • 22 Stammberger T, Eckstein F, Englmeier K H et al. Determination of 3D cartilage thickness data from MR imaging: computational method and reproducibility in the living.  Magnetic resonance in medicine. 1999;  41 529-536
  • 23 Eckstein F, Heudorfer L, Faber S C et al. Long-term and resegmentation precision of quantitative cartilage MR imaging (qMRI).  Osteoarthritis and cartilage. 2002;  10 922-928
  • 24 Hardya P A, Newmark R, Liu Y M et al. The influence of the resolution and contrast on measuring the articular cartilage volume in magnetic resonance images.  Magnetic resonance imaging. 2000;  18 965-972
  • 25 Eckstein F, Ateshian G, Burgkart R et al. Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis.  Osteoarthritis Cartilage. 2006;  14 974-983
  • 26 Kellgren J H, Lawrence J S. Radiological assessment of osteo-arthrosis.  Annals of the rheumatic diseases. 1957;  16 494-502
  • 27 Altman R D, Hochberg M, Murphy W A et al. Atlas of individual radiographic features in osteoarthritis.  Osteoarthritis and cartilage. 1995;  3 (Suppl A) 3-70
  • 28 Bonakdarpour A. Diagnostic imaging of musculoskeletal diseases: a systematic approach. 1st ed. New York: Springer; 2009
  • 29 Spindler K P, Schils J P, Bergfeld J A et al. Prospective study of osseous, articular, and meniscal lesions in recent anterior cruciate ligament tears by magnetic resonance imaging and arthroscopy.  The American journal of sports medicine. 1993;  21 551-557
  • 30 Fowler P J. Bone injuries associated with anterior cruciate ligament disruption.  Arthroscopy. 1994;  10 453-460
  • 31 Faber K J, Dill J R, Amendola A et al. Occult osteochondral lesions after anterior cruciate ligament rupture. Six-year magnetic resonance imaging follow-up study.  The American journal of sports medicine. 1999;  27 489-494
  • 32 Felson D T, McLaughlin S, Goggins J et al. Bone marrow edema and its relation to progression of knee osteoarthritis.  Annals of internal medicine. 2003;  139 330-336
  • 33 Zysk S P, Krüger A, Baur A et al. Tripled semitendinosus anterior cruciate ligament reconstruction with Endobutton fixation: a 2 – 3-year follow-up study of 35 patients.  Acta orthopaedica Scandinavica. 2000;  71 381-386
  • 34 Drogset J O, Grøntvedt T, Robak O R et al. A sixteen-year follow-up of three operative techniques for the treatment of acute ruptures of the anterior cruciate ligament.  The Journal of bone and joint surgery. 2006;  88 944-952
  • 35 Fink C, Hoser C, Benedetto K P et al. Langzeitergebnisse nach konservativer oder operativer Therapie der vorderen Kreuzbandruptur.  Der Unfallchirurg. 1996;  99 964-969
  • 36 Laxdal G, Kartus J, Ejerhed L et al. Outcome and risk factors after anterior cruciate ligament reconstruction: a follow-up study of 948 patients.  Arthroscopy. 2005;  21 958-964
  • 37 Clancy W G, Ray J M, Zoltan D J. Acute tears of the anterior cruciate ligament. Surgical versus conservative treatment.  The Journal of bone and joint surgery. 1988;  70 1483-1488
  • 38 Passler J M, Babinski K, Schippinger G. Failure of clinical methods in assessing graft integrity after anterior cruciate ligament reconstruction: an arthroscopic evaluation.  Arthroscopy. 1999;  15 27-34
  • 39 Eckstein F, Sittek H, Gavazzeni A et al. Magnetic resonance chondro-crassometry (MR CCM): a method for accurate determination of articular cartilage thickness?.  Magnetic resonance in medicine. 1996;  35 89-96
  • 40 Hyhlik-Dürr A, Faber S, Burgkart R et al. Precision of tibial cartilage morphometry with a coronal water-excitation MR sequence.  European radiology. 2000;  10 297-303
  • 41 Miese F R, Ostendorf B, Wittsack H J et al. [Cartilage quality in finger joints: delayed Gd(DTPA)(2)-enhanced MRI of the cartilage (dGEMRIC) at 3T].  Fortschr Röntgenstr. 2010;  182 873-878
  • 42 Wiener E, Settles M, Weirich G et al. The influence of collagen network integrity on the accumulation of gadolinium-based MR contrast agents in articular cartilage.  Fortschr Röntgenstr. 2011;  183 226-232
  • 43 Raya J G, Arnoldi A P, Weber D L et al. Ultra-high field diffusion tensor imaging of articular cartilage correlated with histology and scanning electron microscopy.  MAGMA. 2011;  24 (4) 247-258

Andreas Paul Arnoldi

Department of Clinical Radiologie, LMU München

Marchioninistrasse 15

81377 München

Phone:  ++ 49/89/70 95 36 20

Fax:  ++ 49/89/70 95 88 32

Email: andreas.arnoldi@med.uni-muenchen.de

    >