Semin Neurol 2011; 31(5): 433-440
DOI: 10.1055/s-0031-1299782
© Thieme Medical Publishers

Genetics of Parkinson's Disease

Kishore R. Kumar1 , 2 , Ana Djarmati-Westenberger1 , Anne Grünewald1
  • 1Section of Clinical and Molecular Neurogenetics, Department of Neurology, University of Lübeck, Lübeck, Germany
  • 2Department of Neurogenetics, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, Sydney, New South Wales, Australia
Further Information

Publication History

Publication Date:
21 January 2012 (online)

ABSTRACT

The identification of genes contributing to Parkinson's disease (PD) has allowed for an improved understanding of the underlying pathogenesis of the disorder. The authors review the rapidly growing field of PD genetics, with a focus on the clinical, genetic, and pathophysiologic features of well-validated monogenic forms of PD caused by mutations in the SNCA, LRRK2, Parkin, PINK1, DJ-1, and ATP13A2 genes. In addition, they discuss mutations in the GBA gene, which increase susceptibility for PD. The authors also evaluate the implications of genome-wide association studies and stem cell-derived disease models and give recommendations for genetic testing.

REFERENCES

  • 1 Polymeropoulos M H, Lavedan C, Leroy E et al.. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease.  Science. 1997;  276 (5321) 2045-2047
  • 2 Spira P J, Sharpe D M, Halliday G, Cavanagh J, Nicholson G A. Clinical and pathological features of a parkinsonian syndrome in a family with an Ala53Thr alpha-synuclein mutation.  Ann Neurol. 2001;  49 (3) 313-319
  • 3 Nishioka K, Hayashi S, Farrer M J et al.. Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson's disease.  Ann Neurol. 2006;  59 (2) 298-309
  • 4 Ross O A, Braithwaite A T, Skipper L M et al.. Genomic investigation of alpha-synuclein multiplication and parkinsonism.  Ann Neurol. 2008;  63 (6) 743-750
  • 5 Bertoncini C W, Fernandez C O, Griesinger C, Jovin T M, Zweckstetter M. Familial mutants of alpha-synuclein with increased neurotoxicity have a destabilized conformation.  J Biol Chem. 2005;  280 (35) 30649-30652
  • 6 Chen L, Feany M B. Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease.  Nat Neurosci. 2005;  8 (5) 657-663
  • 7 Brice A. Genetics of Parkinson's disease: LRRK2 on the rise.  Brain. 2005;  128 (Pt 12) 2760-2762
  • 8 Healy D G, Falchi M, O'Sullivan S S International LRRK2 Consortium et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study.  Lancet Neurol. 2008;  7 (7) 583-590
  • 9 Wszolek Z K, Pfeiffer R F, Tsuboi Y et al.. Autosomal dominant parkinsonism associated with variable synuclein and tau pathology.  Neurology. 2004;  62 (9) 1619-1622
  • 10 Lesage S, Leutenegger A L, Ibanez P French Parkinson's Disease Genetics Study Group et al. LRRK2 haplotype analyses in European and North African families with Parkinson disease: a common founder for the G2019S mutation dating from the 13th century.  Am J Hum Genet. 2005;  77 (2) 330-332
  • 11 Ozelius L J, Senthil G, Saunders-Pullman R et al.. LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews.  N Engl J Med. 2006;  354 (4) 424-425
  • 12 Martin I, Dawson V L, Dawson T M. Recent advances in the genetics of Parkinson's disease.  Annu Rev Genomics Hum Genet. 2011;  12 301-325
  • 13 Smith W W, Pei Z, Jiang H, Dawson V L, Dawson T M, Ross C A. Kinase activity of mutant LRRK2 mediates neuronal toxicity.  Nat Neurosci. 2006;  9 (10) 1231-1233
  • 14 Lücking C B, Dürr A, Bonifati V French Parkinson's Disease Genetics Study Group et al. Association between early-onset Parkinson's disease and mutations in the parkin gene.  N Engl J Med. 2000;  342 (21) 1560-1567
  • 15 Klein C, Lohmann-Hedrich K. Impact of recent genetic findings in Parkinson's disease.  Curr Opin Neurol. 2007;  20 (4) 453-464
  • 16 Mori H, Kondo T, Yokochi M et al.. Pathologic and biochemical studies of juvenile parkinsonism linked to chromosome 6q.  Neurology. 1998;  51 (3) 890-892
  • 17 Hristova V A, Beasley S A, Rylett R J, Shaw G S. Identification of a novel Zn2+-binding domain in the autosomal recessive juvenile Parkinson-related E3 ligase parkin.  J Biol Chem. 2009;  284 (22) 14978-14986
  • 18 Henn I H, Bouman L, Schlehe J S et al.. Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling.  J Neurosci. 2007;  27 (8) 1868-1878
  • 19 Palacino J J, Sagi D, Goldberg M S et al.. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice.  J Biol Chem. 2004;  279 (18) 18614-18622
  • 20 Grünewald A, Voges L, Rakovic A et al.. Mutant parkin impairs mitochondrial function and morphology in human fibroblasts.  PLoS ONE. 2010;  5 (9) e12962
  • 21 Shin J H, Ko H S, Kang H et al.. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease.  Cell. 2011;  144 (5) 689-702
  • 22 Vives-Bauza C, Zhou C, Huang Y et al.. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy.  Proc Natl Acad Sci U S A. 2010;  107 (1) 378-383
  • 23 Klein C, Djarmati A, Hedrich K et al.. PINK1, Parkin, and DJ-1 mutations in Italian patients with early-onset parkinsonism.  Eur J Hum Genet. 2005;  13 (9) 1086-1093
  • 24 Steinlechner S, Stahlberg J, Völkel B et al.. Co-occurrence of affective and schizophrenia spectrum disorders with PINK1 mutations.  J Neurol Neurosurg Psychiatry. 2007;  78 (5) 532-535
  • 25 Li Y, Tomiyama H, Sato K et al.. Clinicogenetic study of PINK1 mutations in autosomal recessive early-onset parkinsonism.  Neurology. 2005;  64 (11) 1955-1957
  • 26 Valente E M, Salvi S, Ialongo T et al.. PINK1 mutations are associated with sporadic early-onset parkinsonism.  Ann Neurol. 2004;  56 (3) 336-341
  • 27 Valente E M, Abou-Sleiman P M, Caputo V et al.. Hereditary early-onset Parkinson's disease caused by mutations in PINK1.  Science. 2004;  304 (5674) 1158-1160
  • 28 Clark I E, Dodson M W, Jiang C et al.. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin.  Nature. 2006;  441 (7097) 1162-1166
  • 29 Liu W, Acín-Peréz R, Geghman K D, Manfredi G, Lu B, Li C. Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission.  Proc Natl Acad Sci U S A. 2011;  108 (31) 12920-12924
  • 30 Pankratz N, Pauciulo M W, Elsaesser V E Parkinson Study Group - PROGENI Investigators et al. Mutations in DJ-1 are rare in familial Parkinson disease.  Neurosci Lett. 2006;  408 (3) 209-213
  • 31 Bonifati V, Rizzu P, van Baren M J et al.. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism.  Science. 2003;  299 (5604) 256-259
  • 32 Takahashi-Niki K, Niki T, Taira T, Iguchi-Ariga S M, Ariga H. Reduced anti-oxidative stress activities of DJ-1 mutants found in Parkinson's disease patients.  Biochem Biophys Res Commun. 2004;  320 (2) 389-397
  • 33 Malgieri G, Eliezer D. Structural effects of Parkinson's disease linked DJ-1 mutations.  Protein Sci. 2008;  17 (5) 855-868
  • 34 Irrcher I, Aleyasin H, Seifert E L et al.. Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics.  Hum Mol Genet. 2010;  19 (19) 3734-3746
  • 35 Ramirez A, Heimbach A, Gründemann J et al.. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase.  Nat Genet. 2006;  38 (10) 1184-1191
  • 36 Behrens M I, Brüggemann N, Chana P et al.. Clinical spectrum of Kufor-Rakeb syndrome in the Chilean kindred with ATP13A2 mutations.  Mov Disord. 2010;  25 (12) 1929-1937
  • 37 Park J S, Mehta P, Cooper A A et al.. Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing Kufor-Rakeb syndrome, a form of early-onset parkinsonism.  Hum Mutat. 2011;  32 (8) 956-964
  • 38 Khan N L, Scherfler C, Graham E et al.. Dopaminergic dysfunction in unrelated, asymptomatic carriers of a single parkin mutation.  Neurology. 2005;  64 (1) 134-136
  • 39 Khan N L, Valente E M, Bentivoglio A R et al.. Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: an 18F-dopa PET study.  Ann Neurol. 2002;  52 (6) 849-853
  • 40 Vilariño-Güell C, Wider C, Ross O A et al.. VPS35 mutations in Parkinson disease.  Am J Hum Genet. 2011;  89 (1) 162-167
  • 41 Zimprich A, Benet-Pagès A, Struhal W et al.. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease.  Am J Hum Genet. 2011;  89 (1) 168-175
  • 42 Sidransky E, Nalls M A, Aasly J O et al.. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease.  N Engl J Med. 2009;  361 (17) 1651-1661
  • 43 Mazzulli J R, Xu Y H, Sun Y et al.. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies.  Cell. 2011;  146 (1) 37-52
  • 44 Nalls M A, Plagnol V, Hernandez D G International Parkinson Disease Genomics Consortium et al. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies.  Lancet. 2011;  377 (9766) 641-649
  • 45 Klein C, Ziegler A. From GWAS to clinical utility in Parkinson's disease.  Lancet. 2011;  377 (9766) 613-614
  • 46 Lill C M, Roehr J T, McQueen M B et al.. The PDGene database. Alzheimer research forum. Available at: http://www.pdgene.org/ Accessed December 8, 2011
  • 47 Harbo H F, Finsterer J, Baets J EFNS et al. EFNS guidelines on the molecular diagnosis of neurogenetic disorders: general issues, Huntington's disease, Parkinson's disease and dystonias.  Eur J Neurol. 2009;  16 (7) 777-785
  • 48 Jacobs H, Latza U, Vieregge A, Vieregge P. Attitudes of young patients with Parkinson's disease towards possible presymptomatic and prenatal genetic testing.  Genet Couns. 2001;  12 (1) 55-67
  • 49 Nguyen H N, Byers B, Cord B et al.. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress.  Cell Stem Cell. 2011;  8 (3) 267-280
  • 50 Seibler P, Graziotto J, Jeong H, Simunovic F, Klein C, Krainc D. Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells.  J Neurosci. 2011;  31 (16) 5970-5976
  • 51 Rhee Y H, Ko J Y, Chang M Y et al.. Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease.  J Clin Invest. 2011;  121 (6) 2326-2335
  • 52 Caiazzo M, Dell'Anno M T, Dvoretskova E et al.. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts.  Nature. 2011;  476 (7359) 224-227
  • 53 Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update.  Hum Mutat. 2010;  31 (7) 763-780
  • 54 Klein C, Schlossmacher M G. The genetics of Parkinson disease: implications for neurological care.  Nat Clin Pract Neurol. 2006;  2 (3) 136-146

Anne GrünewaldPh.D. 

Section of Clinical and Molecular Neurogenetics, Department of Neurology, University of Lübeck

Ratzeburger Allee 160, Lübeck 23538, Germany

Email: anne.gruenewald@neuro.uni-luebeck.de

    >