Semin Reprod Med 2013; 31(01): 024-032
DOI: 10.1055/s-0032-1331794
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

An Evolutionary Perspective on Adult Female Germline Stem Cell Function from Flies to Humans

Dori C. Woods
1   Vincent Center for Reproductive Biology, Massachusetts General Hospital
2   Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts
,
Jonathan L. Tilly
1   Vincent Center for Reproductive Biology, Massachusetts General Hospital
2   Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
17 January 2013 (online)

Abstract

The concept that oogenesis continues into reproductive life has been well established in nonmammalian species. Recent studies of mice and women indicate that oocyte formation is also not, as traditionally believed, restricted to the fetal or perinatal periods. Analogous to de novo oocyte formation in flies and fish, newly formed oocytes in adult mammalian ovaries arise from germline stem cells (GSCs) or, more specifically, oogonial stem cells (OSCs). Studies of mice have confirmed that isolated OSCs, once delivered back into adult ovaries, are capable of generating fully functional eggs that fertilize to produce healthy embryos and offspring. Parallel studies of OSCs recently purified from ovaries of reproductive-age women indicate that these cells closely resemble their mouse ovary–derived counterparts, although the fertilization competency of oocytes generated by human OSCs awaits clarification. Despite the ability of OSCs to produce new oocytes during adulthood, oogenesis will still ultimately cease with age, contributing to ovarian failure. The causal mechanisms behind these events in mammals are unknown, but studies of flies have revealed that GSC niche dysfunction plays a critical role in age-related oogenic failure. Such insights derived from evaluation of nonmammalian species, in which postnatal oogenesis has been studied in depth, may aid in development of new strategies to alleviate ovarian failure and infertility in mammals.

 
  • References

  • 1 Kirilly D, Xie T. The Drosophila ovary: an active stem cell community. Cell Res 2007; 17 (1) 15-25
  • 2 Zhao R, Xuan Y, Li X, Xi R. Age-related changes of germline stem cell activity, niche signaling activity and egg production in Drosophila . Aging Cell 2008; 7 (3) 344-354
  • 3 Nakamura S, Kobayashi K, Nishimura T, Higashijima S, Tanaka M. Identification of germline stem cells in the ovary of the teleost medaka. Science 2010; 328 (5985) 1561-1563
  • 4 Nakamura S, Kobayashi K, Nishimura T, Tanaka M. Ovarian germline stem cells in the teleost fish, medaka (Oryzias latipes). Int J Biol Sci 2011; 7 (4) 403-409
  • 5 Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 2004; 428 (6979) 145-150
  • 6 Johnson J, Bagley J, Skaznik-Wikiel M , et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 2005; 122 (2) 303-315
  • 7 Niikura Y, Niikura T, Tilly JL. Aged mouse ovaries possess rare premeiotic germ cells that can generate oocytes following transplantation into a young host environment. Aging (Albany, NY Online) 2009; 1 (12) 971-978
  • 8 Zou K, Yuan Z, Yang Z , et al. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol 2009; 11 (5) 631-636
  • 9 Wang N, Tilly JL. Epigenetic status determines germ cell meiotic commitment in embryonic and postnatal mammalian gonads. Cell Cycle 2010; 9 (2) 339-349
  • 10 Pacchiarotti J, Maki C, Ramos T , et al. Differentiation potential of germ line stem cells derived from the postnatal mouse ovary. Differentiation 2010; 79 (3) 159-170
  • 11 White YAR, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med 2012; 18 (3) 413-421
  • 12 Zuckerman S. The number of oocytes in the mature ovary. Recent Prog Horm Res 1951; 6: 63-108
  • 13 Packer C, Tatar M, Collins A. Reproductive cessation in female mammals. Nature 1998; 392 (6678) 807-811
  • 14 Schulze C. Morphological characteristics of the spermatogonial stem cells in man. Cell Tissue Res 1979; 198 (2) 191-199
  • 15 Lin H. The stem-cell niche theory: lessons from flies. Nat Rev Genet 2002; 3 (12) 931-940
  • 16 Brinster RL. Male germline stem cells: from mice to men. Science 2007; 316 (5823) 404-405
  • 17 de Cuevas M, Matunis EL. The stem cell niche: lessons from the Drosophila testis. Development 2011; 138 (14) 2861-2869
  • 18 Tilly JL, Niikura Y, Rueda BR. The current status of evidence for and against postnatal oogenesis in mammals: a case of ovarian optimism versus pessimism?. Biol Reprod 2009; 80 (1) 2-12
  • 19 Woods DC, Tilly JL. The next (re)generation of human ovarian biology and female fertility: is current science tomorrow's practice?. Fertil Steril 2012; 98 (1) 3-10
  • 20 Tworzydlo W, Kloc M, Bilinski SM. Female germline stem cell niches of earwigs are structurally simple and different from those of Drosophila melanogaster. J Morphol 2010; 271 (5) 634-640
  • 21 Wong MD, Jin Z, Xie T. Molecular mechanisms of germline stem cell regulation. Annu Rev Genet 2005; 39: 173-195
  • 22 Waskar M, Li Y, Tower J. Stem cell aging in the Drosophila ovary. AGE 2005; 27: 201-212
  • 23 Pan L, Chen S, Weng C , et al. Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell 2007; 1: 470-478
  • 24 Nystul T, Spradling A. Regulation of epithelial stem cell replacement and follicle formation in the Drosophila ovary. Genetics 2010; 184 (2) 503-515
  • 25 Song X, Zhu CH, Doan C, Xie T. Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science 2002; 296 (5574) 1855-1857
  • 26 Spradling AC. Germline cysts: communes that work. Cell 1993; 72 (5) 649-651
  • 27 Lin H, Yue L, Spradling AC. The Drosophila fusome, a germline-specific organelle, contains membrane skeletal proteins and functions in cyst formation. Development 1994; 120 (4) 947-956
  • 28 de Cuevas M, Lee JK, Spradling AC. α-spectrin is required for germline cell division and differentiation in the Drosophila ovary. Development 1996; 122 (12) 3959-3968
  • 29 Lin H, Spradling AC. Fusome asymmetry and oocyte determination in Drosophila . Dev Genet 1995; 16 (1) 6-12
  • 30 David J, Cohet Y, Foluillet P. The variability between individuals as a measure of senescence: a study of the number of eggs laid and the percentage of hatched eggs in the case of Drosophila melanogaster . Exp Gerontol 1975; 10 (1) 17-25
  • 31 Xie T, Spradling AC. A niche maintaining germ line stem cells in the Drosophila ovary. Science 2000; 290 (5490) 328-330
  • 32 Song X, Call GB, Kirilly D, Xie T. Notch signaling controls germline stem cell niche formation in the Drosophila ovary. Development 2007; 134 (6) 1071-1080
  • 33 Dejima K, Kanai MI, Akiyama T, Levings DC, Nakato H. Novel contact-dependent bone morphogenetic protein (BMP) signaling mediated by heparan sulfate proteoglycans. J Biol Chem 2011; 286 (19) 17103-17111
  • 34 Hayashi Y, Kobayashi S, Nakato H. Drosophila glypicans regulate the germline stem cell niche. J Cell Biol 2009; 187 (4) 473-480
  • 35 Wallace RA, Selman K. Ultrastructural aspects of oogenesis and oocyte growth in fish and amphibians. J Electron Microsc Tech 1990; 16 (3) 175-201
  • 36 Selman K, Wallace R, Sarka A, Qi X. Stages of oocyte development in the zebrafish, Brachydanio rerio . J Morphol 1993; 218: 203-224
  • 37 Grier H. Ovarian germinal epithelium and folliculogenesis in the common snook, Centropomus undecimalis (Teleostei: centropomidae). J Morphol 2000; 243 (3) 265-281
  • 38 Lo Nostro F, Grier H, Andreone L, Guerrero GA. Involvement of the gonadal germinal epithelium during sex reversal and seasonal testicular cycling in the protogynous swamp eel, Synbranchus marmoratus Bloch 1795 (Teleostei, Synbranchidae). J Morphol 2003; 257 (1) 107-126
  • 39 Abascal FJ, Medina A. Ultrastructure of oogenesis in the bluefin tuna, Thunnus thynnus . J Morphol 2005; 264 (2) 149-160
  • 40 Draper BW, McCallum CM, Moens CB. nanos1 is required to maintain oocyte production in adult zebrafish. Dev Biol 2007; 305 (2) 589-598
  • 41 Grier HJ, Uribe MC, Parenti LR. Germinal epithelium, folliculogenesis, and postovulatory follicles in ovaries of rainbow trout, Oncorhynchus mykiss (Walbaum, 1792) (Teleostei, protacanthopterygii, salmoniformes). J Morphol 2007; 268 (4) 293-310
  • 42 Leu DH, Draper BW. The ziwi promoter drives germline-specific gene expression in zebrafish. Dev Dyn 2010; 239 (10) 2714-2721
  • 43 Yoshizaki G, Ichikawa M, Hayashi M , et al. Sexual plasticity of ovarian germ cells in rainbow trout. Development 2010; 137 (8) 1227-1230
  • 44 Underwood JL, Hestand III RS, Thompson BZ. Gonad regeneration in grass carp following bilateral gonadectomy. Prog Fish-Cult 1986; 48: 54-56
  • 45 Kersten CA, Krisfalusi M, Parsons JE, Cloud JG. Gonadal regeneration in masculinized female or steroid-treated rainbow trout (Oncorhynchus mykiss). J Exp Zool 2001; 290 (4) 396-401
  • 46 White YAR, Woods DC, Wood AW. A transgenic zebrafish model of targeted oocyte ablation and de novo oogenesis. Dev Dyn 2011; 240 (8) 1929-1937
  • 47 Everett NB. The present status of the germ-cell problem in vertebrates. Biol Rev Camb Philos Soc 1945; 20: 40-45
  • 48 Pearl R, Schoppe WF. Studies on the physiology of reproduction in the domestic fowl. J Exp Zool 1921; 34: 101-118
  • 49 Zuckerman S. Beyond the Ivory Tower. The Frontiers of Public and Private Science. New York, NY: Taplinger; 1971: 22-34
  • 50 Arai H. On the postnatal development of the ovary (albino rat), with especial reference to the number of ova. Am J Anat 1920; 27: 405-462
  • 51 Allen E. Ovogenesis during sexual maturity. Am J Anat 1923; 31: 439-470
  • 52 Davenport CB. Regeneration of ovaries in mice. J Exp Zool 1925; 42: 1-12
  • 53 Butcher EO. The origin of definitive ova in the white rat (Mus norvegicus albinus). Anat Rec 1927; 37: 13-29
  • 54 Parkes AS, Fielding U, Brambell WR. Ovarian regeneration in the mouse after complete double ovariectomy. Proc R Soc Lond Biol Sci 1927; 101: 328-354
  • 55 Pansky B, Mossman HW. The regenerative capacity of the rabbit ovary. Anat Rec 1953; 116 (1) 19-51
  • 56 Vermande-Van Eck GJ. Neo-ovogenesis in the adult monkey; consequences of atresia of ovocytes. Anat Rec 1956; 125 (2) 207-224
  • 57 Artem'eva NS. Regenerative capacity of the rat ovary after compensatory hypertrophy. Bull Exp Biol Med 1961; 51: 76-81
  • 58 Nichols SM, Bavister BD, Brenner CA, Didier PJ, Harrison RM, Kubisch HM. Ovarian senescence in the rhesus monkey (Macaca mulatta). Hum Reprod 2005; 20 (1) 79-83
  • 59 Gosden RG. Germline stem cells in the postnatal ovary: is the ovary more like a testis?. Hum Reprod Update 2004; 10 (3) 193-195
  • 60 Greenfeld C, Flaws JA. Renewed debate over postnatal oogenesis in the mammalian ovary. Bioessays 2004; 26 (8) 829-832
  • 61 Hoyer PB. Can the clock be turned back on ovarian aging?. Sci SAGE KE 2004; 2004 (10) pe11
  • 62 Telfer EE. Germline stem cells in the postnatal mammalian ovary: a phenomenon of prosimian primates and mice?. Reprod Biol Endocrinol 2004; 2: 24
  • 63 Albertini DF. Micromanagement of the ovarian follicle reserve—do stem cells play into the ledger?. Reproduction 2004; 127 (5) 513-514
  • 64 Byskov AG, Faddy MJ, Lemmen JG, Andersen CY. Eggs forever?. Differentiation 2005; 73 (9–10) 438-446
  • 65 Skaznik-Wikiel M, Tilly JC, Lee H-J , et al. Serious doubts over “Eggs forever?”. Differentiation 2007; 75 (2) 93-99
  • 66 Gougeon A. Neo-oogenesis in the postnatal ovary: fantasy or reality? [in French]. Gynecol Obstet Fertil 2005; 33 (10) 819-823
  • 67 Powell K. Going against the grain. PLoS Biol 2007; 5 (12) e338
  • 68 Gu W, Tekur S, Reinbold R , et al. Mammalian male and female germ cells express a germ cell-specific Y-Box protein, MSY2. Biol Reprod 1998; 59 (5) 1266-1274
  • 69 Yang J, Medvedev S, Yu J , et al. Absence of the DNA-/RNA-binding protein MSY2 results in male and female infertility. Proc Natl Acad Sci U S A 2005; 102 (16) 5755-5760
  • 70 Telfer EE, McLaughlin M, Ding C, Thong KJ. A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Hum Reprod 2008; 23 (5) 1151-1158
  • 71 Telfer EE, McLaughlin M. In vitro development of ovarian follicles. Semin Reprod Med 2011; 29 (1) 15-23
  • 72 Sadri-Ardekani H, Mizrak SC, van Daalen SK , et al. Propagation of human spermatogonial stem cells in vitro. JAMA 2009; 302 (19) 2127-2134
  • 73 Sadri-Ardekani H, Akhondi MA, van der Veen F, Repping S, van Pelt AM. In vitro propagation of human prepubertal spermatogonial stem cells. JAMA 2011; 305 (23) 2416-2418
  • 74 Ko K, Schöler HR. Embryonic stem cells as a potential source of gametes. Semin Reprod Med 2006; 24 (5) 322-329
  • 75 Nagano MC. In vitro gamete derivation from pluripotent stem cells: progress and perspective. Biol Reprod 2007; 76 (4) 546-551
  • 76 Nicholas CR, Chavez SL, Baker VL, Reijo Pera RA. Instructing an embryonic stem cell-derived oocyte fate: lessons from endogenous oogenesis. Endocr Rev 2009; 30 (3) 264-283
  • 77 Telfer EE, Albertini DF. The quest for human ovarian stem cells. Nat Med 2012; 18 (3) 353-354
  • 78 Woods DC, White Y, Tilly JL. Purification of oogonial stem cells from adult mouse and human ovaries: an assessment of the literature and a view toward the future. Reprod Sci 2013; 20 (1) 7-15