J Knee Surg 2013; 26(05): 363-370
DOI: 10.1055/s-0033-1341578
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Effect of Progressive Degrees of Medial Meniscal Loss on Stability after Anterior Cruciate Ligament Reconstruction

Patrick C. McCulloch
1   Methodist Center for Sports Medicine, The Methodist Hospital, Houston, Texas
,
Theodore B. Shybut
1   Methodist Center for Sports Medicine, The Methodist Hospital, Houston, Texas
,
Sabir K. Isamaily
2   Department of Orthopedic Research, Institute of Orthopedic Research & Education (IORE), Houston, Texas
,
Salim Durrani
2   Department of Orthopedic Research, Institute of Orthopedic Research & Education (IORE), Houston, Texas
,
Johnathan E. Gold
2   Department of Orthopedic Research, Institute of Orthopedic Research & Education (IORE), Houston, Texas
,
Philip C. Noble
2   Department of Orthopedic Research, Institute of Orthopedic Research & Education (IORE), Houston, Texas
3   Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas
,
David M. Lintner
1   Methodist Center for Sports Medicine, The Methodist Hospital, Houston, Texas
› Author Affiliations
Further Information

Publication History

29 August 2012

07 February 2013

Publication Date:
19 March 2013 (online)

Abstract

Previous studies report conflicting results on whether loss of the medial meniscus compromises knee stability after reconstruction of the anterior cruciate ligament (ACL). The purpose of this study was to determine whether the degree of medial meniscus deficiency affects the stability of the ACL-reconstructed knee. Six cadaveric knees were arthroscopically reconstructed with bone–patellar tendon–bone autografts using an anatomic “footprint” technique. Knees tested were ACL-deficient and after reconstruction under three different meniscal states: with partial medial meniscectomy, subtotal meniscectomy, and meniscal root transection. Biomechanical testing was performed at 30 and 60 degrees of flexion under two loading conditions: (1) 134-N anterior tibial load termed anterior tibial translation (ATT) and (2) 10-Nm valgus load combined with 5 Nm of internal tibial torque termed provocative pivot maneuver (PPM). Knee kinematics was measured using a custom activity simulator, motion analysis system, and three-dimensional CT reconstructions. During both ATT and PPM loading, ACL deficiency resulted in a significant increase in anterior translation compared with knees with an intact ACL or those that had undergone ACL reconstruction (p < 0.05). Neither the addition of a partial nor subtotal medial meniscectomy led to increased instability. Only after medial meniscal root transection was increased instability of the ACL-deficient knee detected compared with intact, partial, or subtotal meniscectomy states (p < 0.01). In all states of meniscal deficiency, ACL reconstruction restored internal tibial rotation and anterior translation at 30 degrees to that of the intact knee (p > 0.05). Anatomic single bundle ACL reconstruction was able to restore knee stability in all conditions of medial meniscal deficiency.

 
  • References

  • 1 Levy IM, Torzilli PA, Warren RF. The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Joint Surg Am 1982; 64 (6) 883-888
  • 2 Shoemaker SC, Markolf KL. The role of the meniscus in the anterior-posterior stability of the loaded anterior cruciate-deficient knee. Effects of partial versus total excision. J Bone Joint Surg Am 1986; 68 (1) 71-79
  • 3 Allen CR, Wong EK, Livesay GA, Sakane M, Fu FH, Woo SL. Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J Orthop Res 2000; 18 (1) 109-115
  • 4 Papageorgiou CD, Gil JE, Kanamori A, Fenwick JA, Woo SL, Fu FH. The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus. Am J Sports Med 2001; 29 (2) 226-231
  • 5 Spang JT, Dang AB, Mazzocca A , et al. The effect of medial meniscectomy and meniscal allograft transplantation on knee and anterior cruciate ligament biomechanics. Arthroscopy 2010; 26 (2) 192-201
  • 6 Wu WH, Hackett T, Richmond JC. Effects of meniscal and articular surface status on knee stability, function, and symptoms after anterior cruciate ligament reconstruction: a long-term prospective study. Am J Sports Med 2002; 30 (6) 845-850
  • 7 Seon JK, Gadikota HR, Kozanek M, Oh LS, Gill TJ, Li G. The effect of anterior cruciate ligament reconstruction on kinematics of the knee with combined anterior cruciate ligament injury and subtotal medial meniscectomy: an in vitro robotic investigation. Arthroscopy 2009; 25 (2) 123-130
  • 8 Petrigliano FA, Musahl V, Suero EM, Citak M, Pearle AD. Effect of meniscal loss on knee stability after single-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2011; 19 (Suppl. 01) S86-S93
  • 9 Musahl V, Bedi A, Citak M, O'Loughlin P, Choi D, Pearle AD. Effect of single-bundle and double-bundle anterior cruciate ligament reconstructions on pivot-shift kinematics in anterior cruciate ligament-and meniscus-deficient knees. Am J Sports Med 2011; 39: 366-373
  • 10 Bedi A, Musahl V, O'Loughlin P , et al. A comparison of the effect of central anatomical single-bundle anterior cruciate ligament reconstruction and double-bundle anterior cruciate ligament reconstruction on pivot-shift kinematics. Am J Sports Med 2010; 38 (9) 1788-1794
  • 11 Spindler KP, Schils JP, Bergfeld JA , et al. Prospective study of osseous, articular, and meniscal lesions in recent anterior cruciate ligament tears by magnetic resonance imaging and arthroscopy. Am J Sports Med 1993; 21 (4) 551-557
  • 12 Bellabarba C, Bush-Joseph CA, Bach Jr BR. Patterns of meniscal injury in the anterior cruciate-deficient knee: a review of the literature. Am J Orthop 1997; 26 (1) 18-23
  • 13 Fithian DC, Paxton LW, Goltz DH. Fate of the anterior cruciate ligament-injured knee. Orthop Clin North Am 2002; 33 (4) 621-636 , v v
  • 14 Yoo JC, Ahn JH, Lee SH, Yoon YC. Increasing incidence of medial meniscal tears in nonoperatively treated anterior cruciate ligament insufficiency patients documented by serial magnetic resonance imaging studies. Am J Sports Med 2009; 37 (8) 1478-1483
  • 15 Murray PJ, Alexander JW, Gold JE, Icenogle KD, Noble PC, Lowe WR. Anatomic double-bundle anterior cruciate ligament reconstruction: kinematics and knee flexion angle-graft tension relation. Arthroscopy 2010; 26 (2) 202-213
  • 16 Gabriel MT, Wong EK, Woo SL-Y, Yagi M, Debski RE. Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthop Res 2004; 22 (1) 85-89
  • 17 Kanamori A, Zeminski J, Rudy TW, Li G, Fu FH, Woo SL-Y. The effect of axial tibial torque on the function of the anterior cruciate ligament: a biomechanical study of a simulated pivot shift test. Arthroscopy 2002; 18 (4) 394-398
  • 18 Lee SJ, Aadalen KJ, Malaviya P , et al. Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee. Am J Sports Med 2006; 34 (8) 1334-1344
  • 19 Fu FH, Bennett CH, Ma CB, Menetrey J, Lattermann C. Current trends in anterior cruciate ligament reconstruction. Part II. Operative procedures and clinical correlations. Am J Sports Med 2000; 28 (1) 124-130
  • 20 Gill TJ, Steadman JR. Anterior cruciate ligament reconstruction the two-incision technique. Orthop Clin North Am 2002; 33 (4) 727-735 , vii vii
  • 21 Ho JY, Gardiner A, Shah V, Steiner ME. Equal kinematics between central anatomic single-bundle and double-bundle reconstructions. Arthroscopy 2009; 25 (5) 464-472
  • 22 Abebe ES, Moorman III CT, Dziedzic TS , et al. Femoral tunnel placement during anterior cruciate ligament reconstruction: an in vivo imaging analysis comparing transtibial and 2-incision tibial tunnel-independent techniques. Am J Sports Med 2009; 37 (10) 1904-1911
  • 23 Steiner ME, Battaglia TC, Heming JF, Rand JD, Festa A, Baria M. Independent drilling outperforms conventional transtibial drilling in anterior cruciate ligament reconstruction. Am J Sports Med 2009; 37 (10) 1912-1919
  • 24 Bedi A, Musahl V, Steuber V , et al. Transtibial versus anteromedial portal reaming in anterior cruciate ligament reconstruction: an anatomic and biomechanical evaluation of surgical technique. Arthroscopy 2011; 27 (3) 380-390
  • 25 Boden BP, Sheehan FT, Torg JS, Hewett TE. Noncontact anterior cruciate ligament injuries: mechanisms and risk factors. J Am Acad Orthop Surg 2010; 18 (9) 520-527
  • 26 Gadikota HR, Wu JL, Seon JK, Sutton K, Gill TJ, Li G. Single-tunnel double-bundle anterior cruciate ligament reconstruction with anatomical placement of hamstring tendon graft: can it restore normal knee joint kinematics?. Am J Sports Med 2010; 38 (4) 713-720
  • 27 Markolf KL, Park S, Jackson SR, McAllister DR. Anterior-posterior and rotatory stability of single and double-bundle anterior cruciate ligament reconstructions. J Bone Joint Surg Am 2009; 91 (1) 107-118
  • 28 Kondo E, Merican AM, Yasuda K, Amis AA. Biomechanical comparisons of knee stability after anterior cruciate ligament reconstruction between 2 clinically available transtibial procedures: anatomic double bundle versus single bundle. Am J Sports Med 2010; 38 (7) 1349-1358
  • 29 Allaire R, Muriuki M, Gilbertson L, Harner CD. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. J Bone Joint Surg Am 2008; 90 (9) 1922-1931
  • 30 Shelbourne KD, Gray T. Results of anterior cruciate ligament reconstruction based on meniscus and articular cartilage status at the time of surgery. Five- to fifteen-year evaluations. Am J Sports Med 2000; 28 (4) 446-452