Semin Liver Dis 2013; 33(04): 343-357
DOI: 10.1055/s-0033-1358527
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Role of Gastrointestinal Hormones in Hepatic Lipid Metabolism

Jamie Eugene Mells
1   Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
,
Frank A. Anania
1   Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
› Author Affiliations
Further Information

Publication History

Publication Date:
12 November 2013 (online)

Abstract

Hepatocellular accumulation of free fatty acids (FFAs) in the form of triglycerides constitutes the metabolic basis for the development of nonalcoholic fatty liver disease (NAFLD). Recent data demonstrate that excess FFA hepatocyte storage is likely to lead to lipotoxicity and hepatocyte apoptosis. Hence, FFA-mediated hepatocyte injury is a key contributor to the pathogenesis of nonalcoholic steatohepatitis (NASH). Nonalcoholic steatohepatitis, obesity, type 2 diabetes, essential hypertension, and other common medical problems together comprise metabolic syndrome. Evidence suggests that peptide hormones from the L cells of the distal small intestine, which comprise the core of the enteroendocrine system (EES), play two key roles, serving either as incretins, or as mediators of appetite and satiety in the central nervous system. Recent data related to glucagon-like peptide-1 (GLP-1) and other known L-cell hormones have accumulated due to the increasing frequency of bariatric surgery, which increase delivery of bile salts to the hindgut. Bile acids are a key stimulus for the TGR5 receptor of the L cells. Enhanced bile-salt flow and subsequent EES stimulation may be central to elimination of hepatic steatosis following bariatric surgery. Although GLP-1 is a clinically relevant pharmacological analogue that drives pancreatic β−cell insulin output, GLP-1 analogues also have independent benefits via their effects on hepatocellular FFA metabolism. The authors also discuss recent data regarding the role of the major peptides released by the EES, which promote satiety and modulate energy homeostasis and utilization, as well as those that control fat absorption and intestinal permeability. Taken together, elucidating novel functions for EES-related peptides and pharmacologic development of peptide analogues offer potential far-ranging treatment for obesity-related human disease.

 
  • References

  • 1 O'Grady MJ, Capretta JC. Assessing the Economics of Obesity and Obesity Interventions. Campaign to End Obesity. Princeton, NJ: Robert Wood Johnson Foundation; 2012: 1-40
  • 2 Flegal KM. Epidemiologic aspects of overweight and obesity in the United States. Physiol Behav 2005; 86 (5) 599-602
  • 3 Flegal KM. Excess deaths associated with obesity: cause and effect. Int J Obes (Lond) 2006; 30 (8) 1171-1172
  • 4 Flegal KM, Graubard BI, Williamson DF, Gail MH. Excess deaths associated with underweight, overweight, and obesity. JAMA 2005; 293 (15) 1861-1867
  • 5 Bellentani S, Scaglioni F, Marino M, Bedogni G. Epidemiology of non-alcoholic fatty liver disease. Dig Dis 2010; 28 (1) 155-161
  • 6 Chen K, Lindsey JB, Khera A , et al. Independent associations between metabolic syndrome, diabetes mellitus and atherosclerosis: observations from the Dallas Heart Study. Diab Vasc Dis Res 2008; 5 (2) 96-101
  • 7 Monda KL, North KE, Hunt SC, Rao DC, Province MA, Kraja AT. The genetics of obesity and the metabolic syndrome. Endocr Metab Immune Disord Drug Targets 2010; 10 (2) 86-108
  • 8 Bastard JP, Maachi M, Lagathu C , et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 2006; 17 (1) 4-12
  • 9 Capeau J. Insulin resistance and steatosis in humans. Diabetes Metab 2008; 34 (6 Pt 2) 649-657
  • 10 Hiltunen JK, Autio KJ, Schonauer MS, Kursu VA, Dieckmann CL, Kastaniotis AJ. Mitochondrial fatty acid synthesis and respiration. Biochim Biophys Acta 2010; 1797 (6-7) 1195-1202
  • 11 Trauner M, Arrese M, Wagner M. Fatty liver and lipotoxicity. Biochim Biophys Acta 2010; 1801 (3) 299-310
  • 12 Malhi H, Bronk SF, Werneburg NW, Gores GJ. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem 2006; 281 (17) 12093-12101
  • 13 Ricchi M, Odoardi MR, Carulli L , et al. Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J Gastroenterol Hepatol 2009; 24 (5) 830-840
  • 14 Chavez-Tapia NC, Rosso N, Tiribelli C. Effect of intracellular lipid accumulation in a new model of non-alcoholic fatty liver disease. BMC Gastroenterol 2012; 12: 20
  • 15 Henkel A, Green RM. The unfolded protein response in fatty liver disease. Sem Liver Dis 2013; 33: 321-329
  • 16 Wang D, Wei Y, Pagliassotti MJ. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology 2006; 147 (2) 943-951
  • 17 Wei Y, Wang D, Topczewski F, Pagliassotti MJ. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab 2006; 291 (2) E275-E281
  • 18 Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 2005; 6 (1) 79-87
  • 19 Czaja MJ, Ding WX, Donohue TM , et al. Functions of autophagy in normal and diseased liver. Autophagy 2013; 9 (8) 1131-1158
  • 20 Drucker DJ, Lovshin J, Baggio L , et al. New developments in the biology of the glucagon-like peptides GLP-1 and GLP-2. Ann N Y Acad Sci 2000; 921: 226-232
  • 21 Baggio LL, Drucker DJ. Harnessing the therapeutic potential of glucagon-like peptide-1: a critical review. Treat Endocrinol 2002; 1 (2) 117-125
  • 22 Brubaker PL, Drucker DJ. Minireview: glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 2004; 145 (6) 2653-2659
  • 23 Drucker DJ. The role of gut hormones in glucose homeostasis. J Clin Invest 2007; 117 (1) 24-32
  • 24 Baggio LL, Holland D, Wither J, Drucker DJ. Lymphocytic infiltration and immune activation in metallothionein promoter-exendin-4 (MT-Exendin) transgenic mice. Diabetes 2006; 55 (6) 1562-1570
  • 25 Moran GW, Leslie FC, Levison SE, Worthington J, McLaughlin JT. Enteroendocrine cells: neglected players in gastrointestinal disorders?. Therap Adv Gastroenterol 2008; 1 (1) 51-60
  • 26 Sternini C, Anselmi L, Rozengurt E. Enteroendocrine cells: a site of 'taste' in gastrointestinal chemosensing. Curr Opin Endocrinol Diabetes Obes 2008; 15 (1) 73-78
  • 27 Habib AM, Richards P, Cairns LS , et al. Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 2012; 153 (7) 3054-3065
  • 28 Li HJ, Ray SK, Singh NK, Johnston B, Leiter AB. Basic helix-loop-helix transcription factors and enteroendocrine cell differentiation. Diabetes Obes Metab 2011; 13 (Suppl. 01) 5-12
  • 29 Gunawardene AR, Corfe BM, Staton CA. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol 2011; 92 (4) 219-231
  • 30 Ahlman H , Nilsson. The gut as the largest endocrine organ in the body. Ann Oncol 2001; 12 (Suppl. 02) S63-S68
  • 31 Sykaras AG, Demenis C, Case RM, McLaughlin JT, Smith CP. Duodenal enteroendocrine I-cells contain mRNA transcripts encoding key endocannabinoid and fatty acid receptors. PLoS ONE 2012; 7 (8) e42373
  • 32 Moran-Ramos S, Tovar AR, Torres N. Diet: friend or foe of enteroendocrine cells—how it interacts with enteroendocrine cells. Adv Nutr 2012; 3 (1) 8-20
  • 33 Gutierrez-Aguilar R, Woods SC. Nutrition and L and K-enteroendocrine cells. Curr Opin Endocrinol Diabetes Obes 2011; 18 (1) 35-41
  • 34 Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S. Notch signals control the fate of immature progenitor cells in the intestine. Nature 2005; 435 (7044) 964-968
  • 35 May CL, Kaestner KH. Gut endocrine cell development. Mol Cell Endocrinol 2010; 323 (1) 70-75
  • 36 Barker N, van Es JH, Kuipers J , et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449 (7165) 1003-1007
  • 37 Buchwald H, Avidor Y, Braunwald E , et al. Bariatric surgery: a systematic review and meta-analysis. JAMA 2004; 292 (14) 1724-1737
  • 38 Buchwald H, Estok R, Fahrbach K, Banel D, Sledge I. Trends in mortality in bariatric surgery: a systematic review and meta-analysis. Surgery 2007; 142 (4) 621-632 , discussion 632–635
  • 39 Buchwald H, Estok R, Fahrbach K , et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med 2009; 122 (3) 248-256 , e5
  • 40 Maggard-Gibbons M, Maglione M, Livhits M , et al. Bariatric surgery for weight loss and glycemic control in nonmorbidly obese adults with diabetes: a systematic review. JAMA 2013; 309 (21) 2250-2261
  • 41 O'Brien PE. Bariatric surgery: mechanisms, indications and outcomes. J Gastroenterol Hepatol 2010; 25 (8) 1358-1365
  • 42 Field BC, Chaudhri OB, Bloom SR. Bowels control brain: gut hormones and obesity. Nat Rev Endocrinol 2010; 6 (8) 444-453
  • 43 Hng KN, Ang YS. Overview of bariatric surgery for the physician. Clin Med 2012; 12 (5) 435-440
  • 44 Falkén Y, Hellström PM, Holst JJ, Näslund E. Changes in glucose homeostasis after Roux-en-Y gastric bypass surgery for obesity at day three, two months, and one year after surgery: role of gut peptides. J Clin Endocrinol Metab 2011; 96 (7) 2227-2235
  • 45 Barker KB, Palekar NA, Bowers SP, Goldberg JE, Pulcini JP, Harrison SA. Non-alcoholic steatohepatitis: effect of Roux-en-Y gastric bypass surgery. Am J Gastroenterol 2006; 101 (2) 368-373
  • 46 Tiikkainen M, Bergholm R, Vehkavaara S , et al. Effects of identical weight loss on body composition and features of insulin resistance in obese women with high and low liver fat content. Diabetes 2003; 52 (3) 701-707
  • 47 Göke R, Fehmann HC, Linn T , et al. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem 1993; 268 (26) 19650-19655
  • 48 Pohl M, Wank SA. Molecular cloning of the helodermin and exendin-4 cDNAs in the lizard. Relationship to vasoactive intestinal polypeptide/pituitary adenylate cyclase activating polypeptide and glucagon-like peptide 1 and evidence against the existence of mammalian homologues. J Biol Chem 1998; 273 (16) 9778-9784
  • 49 Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993; 214 (3) 829-835
  • 50 Deacon CF, Johnsen AH, Holst JJ. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab 1995; 80 (3) 952-957
  • 51 Drucker DJ. Glucagon-like peptides. Diabetes 1998; 47 (2) 159-169
  • 52 Maruyama T, Miyamoto Y, Nakamura T , et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun 2002; 298 (5) 714-719
  • 53 Graziano MP, Hey PJ, Borkowski D, Chicchi GG, Strader CD. Cloning and functional expression of a human glucagon-like peptide-1 receptor. Biochem Biophys Res Commun 1993; 196 (1) 141-146
  • 54 Dillon JS, Tanizawa Y, Wheeler MB , et al. Cloning and functional expression of the human glucagon-like peptide-1 (GLP-1) receptor. Endocrinology 1993; 133 (4) 1907-1910
  • 55 Arnés L, González N, Tornero-Esteban P , et al. Characteristics of GLP-1 and exendins action upon glucose transport and metabolism in type 2 diabetic rat skeletal muscle. Int J Mol Med 2008; 22 (1) 127-132
  • 56 Baggio LL, Drucker DJ. Clinical endocrinology and metabolism. Glucagon-like peptide-1 and glucagon-like peptide-2. Best Pract Res Clin Endocrinol Metab 2004; 18 (4) 531-554
  • 57 Brubaker PL, Drucker DJ. Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GLP-1, and GLP-2 receptors. Receptors Channels 2002; 8 (3-4) 179-188
  • 58 Baggio L, Kieffer TJ, Drucker DJ. Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, regulates fasting glycemia and nonenteral glucose clearance in mice. Endocrinology 2000; 141 (10) 3703-3709
  • 59 Drucker DJ. Minireview: the glucagon-like peptides. Endocrinology 2001; 142 (2) 521-527
  • 60 Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 1998; 101 (3) 515-520
  • 61 Gupta NA, Mells J, Dunham RM , et al. Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology 2010; 51 (5) 1584-1592
  • 62 Thorens B, Porret A, Bühler L, Deng SP, Morel P, Widmann C. Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor. Diabetes 1993; 42 (11) 1678-1682
  • 63 Mells JE, Fu PP, Sharma S , et al. Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet. Am J Physiol Gastrointest Liver Physiol 2012; 302 (2) G225-G235
  • 64 Svegliati-Baroni G, Saccomanno S, Rychlicki C , et al. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver Int 2011; 31 (9) 1285-1297
  • 65 Pedersen J, Holst JJ. Glucagon like-peptide 1 receptor and the liver. Liver Int 2011; 31 (9) 1243-1245
  • 66 Vendrell J, El Bekay R, Peral B , et al. Study of the potential association of adipose tissue GLP-1 receptor with obesity and insulin resistance. Endocrinology 2011; 152 (11) 4072-4079
  • 67 Ding X, Saxena NK, Lin S, Gupta NA, Anania FA. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology 2006; 43 (1) 173-181
  • 68 Panjwani N, Mulvihill EE, Longuet C , et al. GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE(-/-) mice. Endocrinology 2013; 154 (1) 127-139
  • 69 Sharma S, Mells JE, Fu PP, Saxena NK, Anania FA. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLoS ONE 2011; 6 (9) e25269
  • 70 Yamanaka-Okumura H, Urano E, Kawaura A , et al. Treatment of rapid weight loss in a donor with hepatic steatosis in living donor liver transplantation: a case report. Hepatogastroenterology 2012; 59 (115) 869-871
  • 71 Nativ NI, Maguire TJ, Yarmush G , et al. Liver defatting: an alternative approach to enable steatotic liver transplantation. Am J Transplant 2012; 12 (12) 3176-3183
  • 72 Trevaskis JL, Griffin PS, Wittmer C , et al. Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol 2012; 302 (8) G762-G772
  • 73 Cho YM, Kieffer TJ. K-cells and glucose-dependent insulinotropic polypeptide in health and disease. Vitam Horm 2010; 84: 111-150
  • 74 McIntosh CH, Widenmaier S, Kim SJ. Glucose-dependent insulinotropic polypeptide (Gastric Inhibitory Polypeptide; GIP). Vitam Horm 2009; 80: 409-471
  • 75 Rao RS, Kini S. GIP and bariatric surgery. Obes Surg 2011; 21 (2) 244-252
  • 76 Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132 (6) 2131-2157
  • 77 Musso G, Gambino R, Cassader M. Emerging molecular targets for the treatment of nonalcoholic fatty liver disease. Annu Rev Med 2010; 61: 375-392
  • 78 Reimann F. Molecular mechanisms underlying nutrient detection by incretin-secreting cells. Int Dairy J 2010; 20 (4) 236-242
  • 79 Miyawaki K, Yamada Y, Ban N , et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 2002; 8 (7) 738-742
  • 80 Paschetta E, Hvalryg M, Musso G. Glucose-dependent insulinotropic polypeptide: from pathophysiology to therapeutic opportunities in obesity-associated disorders. Obes Rev 2011; 12 (10) 813-828
  • 81 García-Jiménez C. Wnt and incretin connections. Vitam Horm 2010; 84: 355-387
  • 82 Miyawaki K, Yamada Y, Yano H , et al. Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc Natl Acad Sci U S A 1999; 96 (26) 14843-14847
  • 83 Nie Y, Ma RC, Chan JC, Xu H, Xu G. Glucose-dependent insulinotropic peptide impairs insulin signaling via inducing adipocyte inflammation in glucose-dependent insulinotropic peptide receptor-overexpressing adipocytes. FASEB J 2012; 26 (6) 2383-2393
  • 84 Timper K, Grisouard J, Sauter NS , et al. Glucose-dependent insulinotropic polypeptide induces cytokine expression, lipolysis, and insulin resistance in human adipocytes. Am J Physiol Endocrinol Metab 2013; 304 (1) E1-E13
  • 85 Asmar M. New physiological effects of the incretin hormones GLP-1 and GIP. Dan Med Bull 2011; 58 (2) B4248
  • 86 Asmar M, Simonsen L, Madsbad S, Stallknecht B, Holst JJ, Bülow J. Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans. Diabetes 2010; 59 (9) 2160-2163
  • 87 Asmar M, Simonsen L, Arngrim N, Holst JJ, Dela F, Bülow J. Glucose-dependent insulinotropic polypeptide has impaired effect on abdominal, subcutaneous adipose tissue metabolism in obese subjects. Int J Obes (Lond) 2013;
  • 88 Musso G, Gambino R, Pacini G, De Michieli F, Cassader M. Prolonged saturated fat-induced, glucose-dependent insulinotropic polypeptide elevation is associated with adipokine imbalance and liver injury in nonalcoholic steatohepatitis: dysregulated enteroadipocyte axis as a novel feature of fatty liver. Am J Clin Nutr 2009; 89 (2) 558-567
  • 89 Estall JL, Drucker DJ. Glucagon-like peptide-2. Annu Rev Nutr 2006; 26: 391-411
  • 90 Drucker DJ. Glucagon-like peptide 2. J Clin Endocrinol Metab 2001; 86 (4) 1759-1764
  • 91 Wallis K, Walters JR, Forbes A. Review article: glucagon-like peptide 2—current applications and future directions. Aliment Pharmacol Ther 2007; 25 (4) 365-372
  • 92 Yusta B, Huang L, Munroe D , et al. Enteroendocrine localization of GLP-2 receptor expression in humans and rodents. Gastroenterology 2000; 119 (3) 744-755
  • 93 Meier JJ, Nauck MA, Pott A , et al. Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans. Gastroenterology 2006; 130 (1) 44-54
  • 94 Mellitzer G, Gradwohl G. Enteroendocrine cells and lipid absorption. Curr Opin Lipidol 2011; 22 (3) 171-175
  • 95 McCuskey RS. Anatomy of efferent hepatic nerves. Anat Rec A Discov Mol Cell Evol Biol 2004; 280 (1) 821-826
  • 96 Ding WG, Kitasato H, Kimura H. Development of neuropeptide Y innervation in the liver. Microsc Res Tech 1997; 39 (4) 365-371
  • 97 Larhammar D, Salaneck E. Molecular evolution of NPY receptor subtypes. Neuropeptides 2004; 38 (4) 141-151
  • 98 Hsieh J, Longuet C, Maida A , et al. Glucagon-like peptide-2 increases intestinal lipid absorption and chylomicron production via CD36. Gastroenterology 2009; 137 (3) 997-1005 , e1–e4
  • 99 Hein GJ, Baker C, Hsieh J, Farr S, Adeli K. GLP-1 and GLP-2 as yin and yang of intestinal lipoprotein production: evidence for predominance of GLP-2-stimulated postprandial lipemia in normal and insulin-resistant states. Diabetes 2013; 62 (2) 373-381
  • 100 Degrace P, Moindrot B, Mohamed I , et al. Upregulation of liver VLDL receptor and FAT/CD36 expression in LDLR-/- apoB100/100 mice fed trans-10,cis-12 conjugated linoleic acid. J Lipid Res 2006; 47 (12) 2647-2655
  • 101 Buqué X, Martínez MJ, Cano A , et al. A subset of dysregulated metabolic and survival genes is associated with severity of hepatic steatosis in obese Zucker rats. J Lipid Res 2010; 51 (3) 500-513
  • 102 Miquilena-Colina ME, Lima-Cabello E, Sánchez-Campos S , et al. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut 2011; 60 (10) 1394-1402
  • 103 Pocai A. Unraveling oxyntomodulin, GLP1's enigmatic brother. J Endocrinol 2012; 215 (3) 335-346
  • 104 Drucker DJ. Biologic actions and therapeutic potential of the proglucagon-derived peptides. Nat Clin Pract Endocrinol Metab 2005; 1 (1) 22-31
  • 105 Santoprete A, Capitò E, Carrington PE , et al. DPP-IV-resistant, long-acting oxyntomodulin derivatives. J Pept Sci 2011; 17 (4) 270-280
  • 106 ThanThan S, Asada Y, Saito T , et al. Oxyntomodulin attenuates exendin-4-induced hypoglycemia in cattle. Domest Anim Endocrinol 2013; 44 (2) 70-80
  • 107 Baggio LL, Huang Q, Brown TJ, Drucker DJ. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology 2004; 127 (2) 546-558
  • 108 Jorgensen R, Kubale V, Vrecl M, Schwartz TW, Elling CE. Oxyntomodulin differentially affects glucagon-like peptide-1 receptor beta-arrestin recruitment and signaling through Galpha(s). J Pharmacol Exp Ther 2007; 322 (1) 148-154
  • 109 Bataille D, Gespach C, Tatemoto K , et al. Bioactive enteroglucagon (oxyntomodulin): present knowledge on its chemical structure and its biological activities. Peptides 1981; 2 (Suppl. 02) 41-44
  • 110 Gespach C, Bataille D, Vauclin N, Rosselin G, Moroder L, Wünsch E. Secretin binding sites coupled with adenylate cyclase in rat fundic membranes. Peptides 1981; 2 (Suppl. 02) 247-251
  • 111 Koole C, Wootten D, Simms J , et al. Allosteric ligands of the glucagon-like peptide 1 receptor (GLP-1R) differentially modulate endogenous and exogenous peptide responses in a pathway-selective manner: implications for drug screening. Mol Pharmacol 2010; 78 (3) 456-465
  • 112 Gehlert DR. Introduction to the reviews on neuropeptide Y. Neuropeptides 2004; 38 (4) 135-140
  • 113 Chandarana K, Batterham R. Peptide YY. Curr Opin Endocrinol Diabetes Obes 2008; 15 (1) 65-72
  • 114 Balasubramaniam AA. Neuropeptide Y family of hormones: receptor subtypes and antagonists. Peptides 1997; 18 (3) 445-457
  • 115 Mullins DE, Zhang X, Hawes BE. Activation of extracellular signal regulated protein kinase by neuropeptide Y and pancreatic polypeptide in CHO cells expressing the NPY Y(1), Y(2), Y(4) and Y(5) receptor subtypes. Regul Pept 2002; 105 (1) 65-73
  • 116 Lin S, Boey D, Herzog H. NPY and Y receptors: lessons from transgenic and knockout models. Neuropeptides 2004; 38 (4) 189-200
  • 117 Holzer P, Reichmann F, Farzi A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 2012; 46 (6) 261-274
  • 118 Chee MJ, Colmers WF. Y eat?. Nutrition 2008; 24 (9) 869-877
  • 119 Lin S, Boey D, Couzens M, Lee N, Sainsbury A, Herzog H. Compensatory changes in [125I]-PYY binding in Y receptor knockout mice suggest the potential existence of further Y receptor(s). Neuropeptides 2005; 39 (1) 21-28
  • 120 Lin S, Boey D, Lee N, Schwarzer C, Sainsbury A, Herzog H. Distribution of prodynorphin mRNA and its interaction with the NPY system in the mouse brain. Neuropeptides 2006; 40 (2) 115-123
  • 121 Lindner D, Stichel J, Beck-Sickinger AG. Molecular recognition of the NPY hormone family by their receptors. Nutrition 2008; 24 (9) 907-917
  • 122 Lindner D, van Dieck J, Merten N , et al. GPC receptors and not ligands decide the binding mode in neuropeptide Y multireceptor/multiligand system. Biochemistry 2008; 47 (22) 5905-5914
  • 123 Herzog H, Hort YJ, Ball HJ, Hayes G, Shine J, Selbie LA. Cloned human neuropeptide Y receptor couples to two different second messenger systems. Proc Natl Acad Sci U S A 1992; 89 (13) 5794-5798
  • 124 Heilig M. The NPY system in stress, anxiety and depression. Neuropeptides 2004; 38 (4) 213-224
  • 125 van den Hoek AM, van Heijningen C, Schröder-van der Elst JP , et al. Intracerebroventricular administration of neuropeptide Y induces hepatic insulin resistance via sympathetic innervation. Diabetes 2008; 57 (9) 2304-2310
  • 126 van den Hoek AM, Voshol PJ, Karnekamp BN , et al. Intracerebroventricular neuropeptide Y infusion precludes inhibition of glucose and VLDL production by insulin. Diabetes 2004; 53 (10) 2529-2534
  • 127 Sigala B, McKee C, Soeda J , et al. Sympathetic nervous system catecholamines and neuropeptide Y neurotransmitters are upregulated in human NAFLD and modulate the fibrogenic function of hepatic stellate cells. PLoS ONE 2013; 8 (9) e72928
  • 128 de Piano A, Tock L, Carnier J , et al. The role of nutritional profile in the orexigenic neuropeptide secretion in nonalcoholic fatty liver disease obese adolescents. Eur J Gastroenterol Hepatol 2010; 22 (5) 557-563
  • 129 Garruti G, Cotecchia S, Giampetruzzi F, Giorgino F, Giorgino R. Neuroendocrine deregulation of food intake, adipose tissue and the gastrointestinal system in obesity and metabolic syndrome. J Gastrointestin Liver Dis 2008; 17 (2) 193-198
  • 130 Garruti G, Giusti V, Nussberger J , et al. Expression and secretion of the atrial natriuretic peptide in human adipose tissue and preadipocytes. Obesity (Silver Spring) 2007; 15 (9) 2181-2189
  • 131 El-Salhy M, Mazzawi T, Gundersen D, Hatlebakk JG, Hausken T. The role of peptide YY in gastrointestinal diseases and disorders (review). (review) Int J Mol Med 2013; 31 (2) 275-282
  • 132 Bradley WD, Zwingelstein C, Rondinone CM. The emerging role of the intestine in metabolic diseases. Arch Physiol Biochem 2011; 117 (3) 165-176
  • 133 Rabl C, Campos GM. The impact of bariatric surgery on nonalcoholic steatohepatitis. Semin Liver Dis 2012; 32 (1) 80-91
  • 134 El-Salhy M, Falkmer S, Kramer KJ, Speirs RD. Immunocytochemical evidence for the occurrence of insulin in the frontal ganglion of a Lepidopteran insect, the tobacco hornworm moth, Manduca sexta L. . Gen Comp Endocrinol 1984; 54 (1) 85-88
  • 135 El-Salhy M. Immunocytochemical investigation of the gastro-entero-pancreatic (GEP) neurohormonal peptides in the pancreas and gastrointestinal tract of the dogfish Squalus acanthias. Histochemistry 1984; 80 (2) 193-205
  • 136 Dong CX, Brubaker PL. Ghrelin, the proglucagon-derived peptides and peptide YY in nutrient homeostasis. Nat Rev Gastroenterol Hepatol 2012; 9 (12) 705-715
  • 137 Batterham RL, Cohen MA, Ellis SM , et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med 2003; 349 (10) 941-948
  • 138 Koda S, Date Y, Murakami N , et al. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology 2005; 146 (5) 2369-2375
  • 139 Batterham RL, Cowley MA, Small CJ , et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 2002; 418 (6898) 650-654
  • 140 Maas MI, Hopman WP, Katan MB, Jansen JB. Release of peptide YY and inhibition of gastric acid secretion by long-chain and medium-chain triglycerides but not by sucrose polyester in men. Eur J Clin Invest 1998; 28 (2) 123-130
  • 141 Halldén G, Aponte GW. Evidence for a role of the gut hormone PYY in the regulation of intestinal fatty acid-binding protein transcripts in differentiated subpopulations of intestinal epithelial cell hybrids. J Biol Chem 1997; 272 (19) 12591-12600
  • 142 Onaga T, Zabielski R, Kato S. Multiple regulation of peptide YY secretion in the digestive tract. Peptides 2002; 23 (2) 279-290
  • 143 Pedersen SL, Sasikumar PG, Chelur S , et al. Peptide hormone isoforms: N-terminally branched PYY3-36 isoforms give improved lipid and fat-cell metabolism in diet-induced obese mice. J Pept Sci 2010; 16 (11) 664-673
  • 144 Shi YC, Hämmerle CM, Lee IC , et al. Adult-onset PYY overexpression in mice reduces food intake and increases lipogenic capacity. Neuropeptides 2012; 46 (4) 173-182
  • 145 Asakawa A, Inui A, Yuzuriha H , et al. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology 2003; 124 (5) 1325-1336
  • 146 Stanley S, Wynne K, Bloom S. Gastrointestinal satiety signals III. Glucagon-like peptide 1, oxyntomodulin, peptide YY, and pancreatic polypeptide. Am J Physiol Gastrointest Liver Physiol 2004; 286 (5) G693-G697
  • 147 Zac-Varghese S, Tan T, Bloom SR. Hormonal interactions between gut and brain. Discov Med 2010; 10 (55) 543-552
  • 148 Cox HM. Neuropeptide Y receptors; antisecretory control of intestinal epithelial function. Auton Neurosci 2007; 133 (1) 76-85
  • 149 Simpson K, Parker J, Plumer J, Bloom S. CCK, PYY and PP: the control of energy balance. Handbook Exp Pharmacol 2012; (209) 209-230
  • 150 Adrian TE, Bloom SR, Bryant MG, Polak JM, Heitz PH, Barnes AJ. Distribution and release of human pancreatic polypeptide. Gut 1976; 17 (12) 940-944
  • 151 Asakawa A, Inui A, Ueno N, Fujimiya M, Fujino MA, Kasuga M. Mouse pancreatic polypeptide modulates food intake, while not influencing anxiety in mice. Peptides 1999; 20 (12) 1445-1448
  • 152 Kojima S, Ueno N, Asakawa A , et al. A role for pancreatic polypeptide in feeding and body weight regulation. Peptides 2007; 28 (2) 459-463
  • 153 Gerald C, Walker MW, Criscione L , et al. A receptor subtype involved in neuropeptide-Y-induced food intake. Nature 1996; 382 (6587) 168-171
  • 154 Lin S, Shi YC, Yulyaningsih E , et al. Critical role of arcuate Y4 receptors and the melanocortin system in pancreatic polypeptide-induced reduction in food intake in mice. PLoS ONE 2009; 4 (12) e8488
  • 155 Lassmann V, Vague P, Vialettes B, Simon MC. Low plasma levels of pancreatic polypeptide in obesity. Diabetes 1980; 29 (6) 428-430
  • 156 Uhe AM, Szmukler GI, Collier GR, Hansky J, O'Dea K, Young GP. Potential regulators of feeding behavior in anorexia nervosa. Am J Clin Nutr 1992; 55 (1) 28-32
  • 157 Suzuki K, Jayasena CN, Bloom SR. Obesity and appetite control. Exp Diabetes Res 2012; 2012: 824305
  • 158 Phillips JK, McLean AJ, Hill CE. Receptors involved in nerve-mediated vasoconstriction in small arteries of the rat hepatic mesentery. Br J Pharmacol 1998; 124 (7) 1403-1412