Ultraschall Med 2014; 35(05): 445-450
DOI: 10.1055/s-0034-1365909
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Color Doppler Sonographic Dynamic Tissue Perfusion Measurement Demonstrates Significantly Reduced Cortical Perfusion in Children with Diabetes Mellitus Type 1 without Microalbuminuria and Apparently Healthy Kidneys

Nachweis einer signifikanten kortikalen Perfusionsminderung in scheinbar gesunden Nieren von Kindern mit Diabetes mellitus Typ 1 ohne Mikroalbuminurie mithilfe der dynamischen farbdopplersonografischen Gewebsperfusionsmessung
T. M. Scholbach
,
C. Vogel
,
N. Bergner
Further Information

Publication History

09 August 2013

20 December 2013

Publication Date:
20 February 2014 (online)

Abstract

Motivation: With respect to the devastating consequences of the increasing prevalence of diabetes mellitus, the main reason for end stage renal disease and dialysis in industrialized countries, and the very limited diagnostic and therapeutic possibilities to predict, monitor and prevent diabetic nephropathy (DN), new concepts for early recognition and quantification of the prevailing microvascular changes in DN are urgently needed.

Materials and Methods: We present the first study of renal cortical tissue perfusion measurement by means of standardized color Doppler sonographic videos evaluated with the PixelFlux software 1 for Dynamic Tissue Perfusion Measurement (DTPM) in 92 patients with DM1 without MA compared to 71 healthy probands.

Results: DTPM reveals a highly significant diminution of cortical perfusion in patients with DM1 compared to healthy probands by 31 %, most pronounced in the distal hemicortex (reduction by 50 %) compared to 21 % within the proximal hemicortex.

Conclusion: Thus, DTPM offers a novel means of numerically describing the state of the renal microvasculature in DM in a patient-friendly, non-invasive, non-ionizing manner.

Zusammenfassung

Motivation: Die schwerwiegenden Folgen der zunehmenden Prävalenz des Diabetes mellitus, der Hauptursache terminalen Nierenversagens in den Industrieländern und die noch sehr begrenzten Möglichkeiten, die diabetische Nephropathie (DN) vorherzusehen, zu überwachen und zu verhindern verlangen nach neuen Konzepten der Früherkennung und Quantifizierung mikrovaskulärer Veränderungen.

Material und Methoden: Wir legen die erste Untersuchung zur standardisierten dynamischen farbdopplersonografischen Gewebsperfusionsmessung (DTPM) des renalen Kortex mit der PixelFlux-Software bei 92 Kindern mit Diabetes mellitus Typ 1 (DM1) ohne Mikroalbuminurie (MA) im Vergleich zu 71 gesunden Probanden vor.

Ergebnisse: Dabei fanden wir eine signifikante Perfusionsminderung bei Patienten mit DM1 im Vergleich zu Gesunden um 31 %. Sie war im distalen Hemikortex mit 50 % stärker als im proximalen Hemikortex (21 %) ausgeprägt.

Schlussfolgerung: Mit der DTPM kann die Schädigung kleinster renalen Gefäße bei DM patientenschonend quantifiziert werden.

 
  • References

  • 1 Dryakova M, Englis M, Bartos V et al. Microalbuminuria--a marker of the risk of developing nephropathy in insulin-dependent diabetes. Czechoslovak medicine 1989; 12: 181-188
  • 2 Perkins BA, Ficociello LH, Silva KH et al. Regression of microalbuminuria in type 1 diabetes. The New England journal of medicine 2003; 348: 2285-2293
  • 3 Perkins BA, Krolewski AS. Early nephropathy in type 1 diabetes: the importance of early renal function decline. Current opinion in nephrology and hypertension 2009; 18: 233-240
  • 4 Giorgino F, Laviola L, Cavallo Perin P et al. Factors associated with progression to macroalbuminuria in microalbuminuric Type 1 diabetic patients: the EURODIAB Prospective Complications Study. Diabetologia 2004; 47: 1020-1028
  • 5 Hovind P, Tarnow L, Rossing P et al. Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. Bmj 2004; 328: 1105
  • 6 Tabaei BP, Al-Kassab AS, Ilag LL et al. Does microalbuminuria predict diabetic nephropathy?. Diabetes care 2001; 24: 1560-1566
  • 7 Perkins BA, Ficociello LH, Roshan B et al. In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney international 2010; 77: 57-64
  • 8 Scholbach T, Dimos I, Scholbach J. A new method of color Doppler perfusion measurement via dynamic sonographic signal quantification in renal parenchyma. Nephron Physiology 2004; 96: 99-104
  • 9 Scholbach T, Girelli E, Scholbach J. Tissue pulsatility index: a new parameter to evaluate renal transplant perfusion. Transplantation 2006; 81: 751-755
  • 10 Scholbach T, Girelli E, Scholbach J. Dynamic tissue perfusion measurement: a novel tool in follow-up of renal transplants. Transplantation 2005; 79: 1711-1716
  • 11 Syversveen T, Brabrand K, Midtvedt K et al. Non-invasive assessment of renal allograft fibrosis by dynamic sonographic tissue perfusion measurement. Acta radiologica 2011; 52: 920-926
  • 12 Chameleon-Software PixelFlux. 2009 www.chameleon-software.de
  • 13 Parving HH, Hommel E. Prognosis in diabetic nephropathy. Bmj 1989; 299: 230-233
  • 14 Nitsch D, Burden R, Steenkamp R et al. Patients with diabetic nephropathy on renal replacement therapy in England and Wales. QJM: monthly journal of the Association of Physicians 2007; 100: 551-560
  • 15 Andersen AR, Christiansen JS, Andersen JK et al. Diabetic nephropathy in Type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia 1983; 25: 496-501
  • 16 Thomas MC, Groop PH, Tryggvason K. Towards understanding the inherited susceptibility for nephropathy in diabetes. Current opinion in nephrology and hypertension 2012; 21: 195-202
  • 17 Andersen S, Mischak H, Zurbig P et al. Urinary proteome analysis enables assessment of renoprotective treatment in type 2 diabetic patients with microalbuminuria. BMC nephrology 2010; 11: 29
  • 18 Papale M, Di Paolo S, Magistroni R et al. Urine proteome analysis may allow noninvasive differential diagnosis of diabetic nephropathy. Diabetes care 2010; 33: 2409-2415
  • 19 Conserva F, Pontrelli P, Accetturo M et al. The pathogenesis of diabetic nephropathy: focus on microRNAs and proteomics. J Nephrol 2013; 26: 811-820
  • 20 Tokgoz H, Turksoy O. Hemodynamic alteration in diabetic nephropathy measured by renal Doppler ultrasonography: does it predict the outcome of the disease?. Clinical hemorheology and microcirculation 2005; 33: 397-398
  • 21 Ohta Y, Fujii K, Arima H et al. Increased renal resistive index in atherosclerosis and diabetic nephropathy assessed by Doppler sonography. Journal of hypertension 2005; 23: 1905-1911
  • 22 Scholbach TM. Changes of renal flow volume in the hemolytic-uremic syndrome--color Doppler sonographic investigations. Pediatric nephrology 2001; 16: 644-647
  • 23 Scholbach T, Wang HK, Yang AH et al. Correlation of histopathologic and dynamic tissue perfusion measurement findings in transplanted kidneys. BMC nephrology 2013; 14: 143
  • 24 Scholbach T, Scholbach J, Krombach GA et al. New method of dynamic color doppler signal quantification in metastatic lymph nodes compared to direct polarographic measurements of tissue oxygenation. International journal of cancer Journal international du cancer 2005; 114: 957-962
  • 25 Krumme B. Renal Doppler sonography--update in clinical nephrology. Nephron Clinical practice 2006; 103: c24-c28
  • 26 Krumme B, Grotz W, Kirste G et al. Determinants of intrarenal Doppler indices in stable renal allografts. Journal of the American Society of Nephrology: JASN 1997; 8: 813-816
  • 27 Schwenger V, Keller T, Hofmann N et al. Color Doppler indices of renal allografts depend on vascular stiffness of the transplant recipients. Am J Transplant 2006; 6: 2721-2724
  • 28 Gerhart MK, Seiler S, Grun OS et al. Indices of systemic atherosclerosis are superior to ultrasound resistance indices for prediction of allograft survival. Nephrol Dial Transplant 2010; 25: 1294-1300
  • 29 Marti E, Bergmann IP, Uehlinger DE et al. Donor effect on cortical perfusion intensity in renal allograft recipients: a paired kidney analysis. American journal of nephrology 2011; 33: 530-536
  • 30 Hamano K, Nitta A, Ohtake T et al. Associations of renal vascular resistance with albuminuria and other macroangiopathy in type 2 diabetic patients. Diabetes care 2008; 31: 1853-1857
  • 31 Scholbach TM, Stolle J, Scholbach J. Three-dimensional volumetric spatially angle-corrected pixelwise fetal flow volume measurement. Ultraschall in der Medizin 2011; 32 (Suppl. 02) E122-E128
  • 32 Lubas A, Ryczek R, Kade G et al. Impact of Cardiovascular Organ Damage on Cortical Renal Perfusion in Patients with Chronic Renal Failure. BioMed Research International 2013; 2013: 5
  • 33 Fioretto P, Steffes MW, Sutherland DE et al. Sequential renal biopsies in insulin-dependent diabetic patients: structural factors associated with clinical progression. Kidney international 1995; 48: 1929-1935
  • 34 Fioretto P, Steffes MW, Sutherland DE et al. Reversal of lesions of diabetic nephropathy after pancreas transplantation. The New England journal of medicine 1998; 339: 69-75
  • 35 Kanwar YS, Sun L, Xie P et al. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annual review of pathology 2011; 6: 395-423
  • 36 Kanwar YS, Wada J, Sun L et al. Diabetic nephropathy: mechanisms of renal disease progression. Experimental biology and medicine 2008; 233: 4-11