Klin Monbl Augenheilkd 2014; 231(6): 626-630
DOI: 10.1055/s-0034-1368533
Experimentelle Studie
Georg Thieme Verlag KG Stuttgart · New York

Eine neue Nanofaser-Matrix für den kornealen Gewebeersatz

New Nanofibrous Scaffold for Corneal Tissue Engineering
S. Salehi
1   Deutsches Textilforschungszentrum Nord-West gGmbH, Universität Duisburg-Essen, Krefeld
2   Augenklinik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf
,
A. K. Grünert
2   Augenklinik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf
,
T. Bahners
1   Deutsches Textilforschungszentrum Nord-West gGmbH, Universität Duisburg-Essen, Krefeld
,
J. S. Gutmann
1   Deutsches Textilforschungszentrum Nord-West gGmbH, Universität Duisburg-Essen, Krefeld
3   Physical Chemistry & CENIDE, Universität Duisburg-Essen, Essen
,
K. P. Steuhl
4   Klinik für Erkrankungen des vorderen Augenabschnitts, Universitäts-Augenklinik, Essen
,
M. Czugala
2   Augenklinik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf
,
B. B. Singer
5   Institut für Anatomie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen
,
T. A. Fuchsluger
2   Augenklinik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf
› Author Affiliations
Further Information

Publication History

eingereicht 28 February 2014

akzeptiert 05 May 2014

Publication Date:
18 June 2014 (online)

Zusammenfassung

Hintergrund: Weltweit leiden circa 10 Millionen Menschen unter einem Sehverlust aufgrund eines Hornhautschadens. Im schlimmsten Fall besteht die einzige Therapieoption in einer Transplantation von kornealem Spendergewebe. In vielen Ländern existiert jedoch ein bedeutender Mangel an qualitativ geeignetem Spendergewebe, der zu verschiedenen Versuchen geführt hat, einen künstlichen Gewebeersatz zu entwickeln. In der vorliegenden Studie beschreiben wir die Entwicklung einer bioabbaubaren Nanofaser-Matrix aus Poly(glycerolsebazinsäure)(PGS)/Poly(ε-Caprolakton)(PCL)-Gemisch zum kornealen Gewebeersatz. Material und Methoden: Die Nanofaser-Matrizen wurden mittels eines modifizierten Elektrospinnverfahrens hergestellt. Die Biokompatibilität des Materials wurde in vitro durch einen kolorimetrischen MTT-Test zum Nachweis der vitalen kornealen Endothelzellen (HCECs) überprüft. Um eine potentielle immunologische Reaktion gegen die Matrizen zu untersuchen, wurden Matrixproben mononukleären Zellen aus peripherem Blut (PBMCs) ausgesetzt. Nach einer Inkubationszeit von 3 Tagen wurden die Zellen mittels Annexin-V-FITC/Propidiumjodid durch FACS-Analyse auf Apoptose und immunologische Reaktionen untersucht. Ergebnisse: Wir konnten erfolgreich zeigen, dass die Kultivierung von HCECs auf PGS/PCL-Matrizen möglich war. Nach 7 Tagen Kultivierung konnte mittels Mikroplattenabsorption eine signifikant höhere Zelldichte gemessen werden als an Tag 3 (p < 0,0001). Gemäß den MTT-Daten war keine Toxizität der Proben nachweisbar. Mit Hinblick auf PBMCs zeigten unsere FACS-Analysen keine Aktivierung oder Inhibierung von Apoptose und Immunreaktionen. Alle Matrix-Zusammensetzungen waren inert gegenüber naiven und aktivierten T-/B-/NK-Zellen und Monozyten. Folglich wurden Leukozytenüberleben und -aktivität durch die Matrizen nicht beeinflusst. Schlussfolgerungen: Es ist uns gelungen, ein gewebeähnliches Konstrukt zu entwickeln, das dem (menschlichen) Hornhautstroma ähnelt. Die Ergebnisse zeigen, dass PGS/PCL-Matrizen eine ideale Alternative für den kornealen Gewebeersatz darstellen, da sie eine hohe Biokompatibilität mit Endothel- und Blutzellen aufweisen.

Abstract

Background: An estimated 10 million people suffer worldwide from vision loss caused by corneal damage. For the worst cases, the only available treatment is transplantation with human donor corneal tissue. However, in numerous countries there is a considerable shortage of corneal tissue of good quality, leading to various efforts to develop tissue substitutes. The present study aims to introduce a nanofibrous scaffold of poly(glycerol sebacate) PGS as a biodegradable implant, for the corneal tissue engineering. Materials and Methods: Nanofibrous scaffolds were produced from PGS and poly(ε-caprolactone) (PCL) by a modified electro-spinning process. The biocompatibility of the material was tested in vitro by colorimetric MTT assay on days 3, 5, and 7 to test the cell viability of human corneal endothelium cells (HCEC). To examine a potential immunological reaction of the scaffolds, samples were exposed to mononuclear cells derived from peripheral blood (PBMCs). After an incubation period of 3 days, supernatants were assayed for apoptotic assessment and immunogenic potentials by annexin V FITC//propidium iodide and flow-cytometric analysis. Results: We could successfully demonstrate that cultivation of HCECs on PGS/PCL scaffolds was possible. Compared to day 3, cell density determined by microplate absorbance was significantly higher after 7 days of cultivation (p < 0.0001). According to the MTT data, none of the samples showed toxicity. Apoptotic assessments by FACS analysis showed that no composition stimulated apoptosis or activated PBMCs occurred. All the compositions were inert for native as well as activated T/B/NK cells and monocytes. It can be concluded that leukocytes and their activity was not affected by the scaffolds. Conclusion: A tissue-like scaffold mimicking the human stroma could be developed. The results indicate that PGS/PCL scaffolds could be considered as ideal candidates for corneal tissue engineering as they are biocompatible in contact to corneal endothelial cells and blood cells.

 
  • Literatur

  • 1 Whitcher JP, Scrinivasan M, Upadhyay MP. Prevention of corneal ulceration in the developing world. Int Ophthalmol Clin 2002; 42: 71-77
  • 2 Thompson jr. RW, Price MO, Bowers PJ et al. Long-term graft survival after penetrating keratoplasty. Ophthalmology 2003; 110: 1396-1402
  • 3 Carlsson DJ, Li F, Shimmura S et al. Bioengineered corneas: how close are we?. Curr Opin Ophthalmol 2003; 14: 192-197
  • 4 Zhu X, Beuerman RW, Chan-Park MB et al. Enhancement of the mechanical and biological properties of a biomembrane for tissue engineering the ocular surface. Ann Acad Med Singapore 2006; 35: 210-214
  • 5 Madden PW, Lai JN, George KA et al. Human corneal endothelial cell growth on a silk fibroin membrane. Biomaterials 2011; 32: 4076-4084
  • 6 Levis HJ, Peh GSL, Toh KP et al. Plastic compressed collagen as a novel carrier for expanded human corneal endothelial cells for transplantation. PLoS One 2012; 7: e50993
  • 7 Hsu WM, Chen KH, Lai JY et al. Transplantation of human corneal endothelial cells using functional biomaterials: poly(N-isopropylacrylamide) and gelatin. J Exp Clin Med 2013; 5: 56-64
  • 8 Yang F, Murugan R, Wang S et al. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005; 26: 2603-2610
  • 9 Wang TJ, Wang IJ, Lu JN et al. Novel chitosan-polycaprolactone blends as potential scaffold and carrier for corneal endothelial transplantation. Mol Vis 2012; 18: 255-264
  • 10 Salehi S, Fathi MH, Haghjooy Javanmard S et al. Generation of PGS/PCL-blend nanofibrous scaffolds mimicking corneal stroma structure. Macromol Mater Eng 2014; 299: 455-469
  • 11 Ruberti JW, Zieske JD. Prelude to corneal tissue engineering – gaining control of collagen organization. Prog Retin Eye Res 2008; 27: 549-577
  • 12 Ihanamaki T, Pelliniemi LJ, Vuorio E et al. Collagens and collagen-related matrix components in the human and mouse eye. Prog Retin Eye Res 2004; 23: 403-434
  • 13 Qazi Y, Wong G, Monson B et al. Corneal transparency: genesis, maintenance and dysfunction. Brain Res Bull 2010; 81: 198-210
  • 14 Woodruff MA, Hutmacher DW. The return of a forgotten polymer–polycaprolactone in the 21st century. Prog in Poly Sci 2010; 35: 1217-1256
  • 15 Wang Y, Ameer GA, Sheppard BJ et al. A tough biodegradable elastomer. Nat Biotechnol 2002; 20: 602-606
  • 16 Sant S, Hwang CM, Lee SH et al. Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties. J Tissue Eng Regen Med 2011; 5: 283-291
  • 17 Rihovia B. Biocompatibility of biomaterials: hemocompatibility, immunocompatiblity and biocompatibility of solid polymeric materials and soluble targetable polymeric carriers. Adv Drug Del Rev 1996; 21: 157-176
  • 18 Discher DE, Janmey P, Wang Y. Tissue cells feel and respond to the stiffness of their substrate. Science 2005; 310: 1139-1143
  • 19 Kharaziha M, Nikkhah M, Shin SR et al. Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials 2013; 34: 6355-6366
  • 20 Neeley WL, Redenti S, Klassen H et al. A microfabricated scaffold for retinal progenitor cell grafting. Biomaterials 2008; 29: 418-426
  • 21 Chen QZ, Ishii H, Thouas GA et al. An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials 2010; 31: 3885-3893
  • 22 Motlagh D, Yang J, Lui KY et al. Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials 2006; 27: 4315-4324
  • 23 Sundback CA, Shyu JY, Wang Y et al. Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials 2005; 2005: 5454-5464
  • 24 Yi F, Lavan DA. Poly(glycerol sebacate) nanofiber scaffolds by core/shell electrospinning. Macromol Biosci 2008; 8: 803-806
  • 25 Salehi S, Bahners T, Gutmann J et al. Characterization of structural, mechanical and nano-mechanical properties of electrospun PGS/PCL fibers. RSC Adv 2014; 4: 16951-16957
  • 26 Jaafar IH, Ammar MM, Jedlicka SS et al. Spectroscopic evaluation, thermal, and thermomechanical characterization of poly(glycerol-sebacate) with variations in curing temperatures and durations. J Mater Sci 2010; 45: 2525-2529
  • 27 Pomerantseva I, Krebs N, Hart A et al. Degradation behavior of poly(glycerol sebacate). J Biomed Mater Res A 2009; 91: 1038-1047
  • 28 Shimmura S, Doillon CJ, Griffith M et al. Collagen-poly(N-isopropylacrylamide)-based membranes for corneal stroma scaffolds. Cornea 2003; 22 (Suppl. 07) S81-S88
  • 29 Torbet J, Malbouyres M, Builles N et al. Orthogonal scaffold of magnetically aligned collagen lamellae for corneal stroma reconstruction. Biomaterials 2007; 28: 4268-4276
  • 30 Phu D, Orwin EJ. Characterizing the effects of aligned collagen fibers and ascorbic acid derivatives on behavior of rabbit corneal fibroblasts. Conf Proc IEEE Eng Med Biol Soc 2009; 2009: 4242-4245
  • 31 Cejkova J, Trosan P, Cejka C et al. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface. Exp Eye Res 2013; 116: 312-323
  • 32 Deshpande P, Ramachandran C, Sefat F et al. Simplifying corneal surface regeneration using a biodegradable synthetic membrane and limbal tissue explants. Biomaterials 2013; 34: 5088-5106
  • 33 Gao Y, Yan J, Cui X et al. Aligned fibrous scaffold induced aligned growth of corneal stroma cells in vitro culture. Chem Res Chinese Uni 2012; 28: 1022-1025
  • 34 Liao S, Li B, Ma Z et al. Biomimetic electrospun nanofibers for tissue regeneration. Biomed Mater 2006; 1: R45-R53
  • 35 Kumbar SG, James R, Nukavarapu SP et al. Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater 2008; 3: 1-15
  • 36 Xu Y, Xu Y, Huang C et al. Development of a rabbit corneal equivalent using an acellular corneal matrix of a porcine substrate. Mol Vis 2008; 14: 2180-2189
  • 37 Pang K, Du L, Wu X. A rabbit anterior cornea replacement derived from acellular porcine cornea matrix, epithelial cells and keratocytes. Biomaterials 2010; 31: 7257-7265
  • 38 Feng Y, Borrelli M, Meyer-Ter-Vehn T et al. Epithelial wound healing on keratin film, amniotic membrane and polystyrene in vitro. Curr Eye Res 2014; 39: 561-570
  • 39 Rimmer S, Johnson C, Zhao B et al. Epithelialization of hydrogels achieved by amine functionalization and co-culture with stromal cells. Biomaterials 2007; 28: 5319-5331
  • 40 Garagorri N, Fermanian S, Thibault R et al. Keratocyte behavior in three-dimensional photopolymerizable poly(ethylene glycol) hydrogels. Acta Biomater 2008; 4: 1139-1147
  • 41 Liu W, Merrett K, Griffith M et al. Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials 2008; 29: 1147-1158
  • 42 Li F, Hackett JM, Chaudhry SH et al. Collagen and glycopolymer based hydrogel for potential corneal application. Acta Biomater 2010; 6: 187-194
  • 43 Dravida S, Gaddipati S, Griffith M et al. A biomimetic scaffold for culturing limbal stem cells: a promising alternative for clinical transplantation. J Tissue Eng Regen Med 2008; 2: 263-271
  • 44 Duan X, McLaughlin C, Griffith M et al. Biofunctionalization of collagen for improved biological response: scaffolds for corneal tissue engineering. Biomaterials 2007; 28: 78-88