Dtsch Med Wochenschr 2014; 139(21): 1109-1113
DOI: 10.1055/s-0034-1370076
Übersicht | Review article
Diabetologie
© Georg Thieme Verlag KG Stuttgart · New York

Phänotypen des Prädiabetes und des Typ-2-Diabetes

Phenotypes of prediabetes and type 2 diabetes
R. Wagner
1   Innere Medizin IV, Abteilung für Endokrinologie, Diabetologie, Vaskuläre Medizin, Nephrologie und Klinische Chemie, Universitätsklinikum Tübingen
,
H.-U. Häring
1   Innere Medizin IV, Abteilung für Endokrinologie, Diabetologie, Vaskuläre Medizin, Nephrologie und Klinische Chemie, Universitätsklinikum Tübingen
2   Institut für Diabetesforschung und metabolische Erkrankungen des HelmholtzZentrums München an der Universität Tübingen, Mitglied des Deutschen Zentrums für Diabetesforschung (DZD) e.V.
,
A. Fritsche
1   Innere Medizin IV, Abteilung für Endokrinologie, Diabetologie, Vaskuläre Medizin, Nephrologie und Klinische Chemie, Universitätsklinikum Tübingen
2   Institut für Diabetesforschung und metabolische Erkrankungen des HelmholtzZentrums München an der Universität Tübingen, Mitglied des Deutschen Zentrums für Diabetesforschung (DZD) e.V.
› Author Affiliations
Further Information

Publication History

14 February 2014

05 May 2014

Publication Date:
13 May 2014 (online)

Zusammenfassung

Typ-2-Diabetes ist eine heterogene Erkrankung, es führen viele unterschiedliche Pathomechanismen zum manifesten Diabetes. Es ist für die erfolgreiche Prävention essenziell, diese unterschiedlichen Pathogenesen zu verstehen. Der manifeste Typ-2-Diabetes-mellitus entsteht regelhaft nach einer Zwischenphase, dem Prädiabetes, der phänotypisch ebenfalls sehr heterogen ist. Diese Phase ist auch deshalb wichtig, weil hier schon das Risiko für diabetesbedingte Folgeerkrankungen erhöht ist und deshalb eine Erkennung und präventive Behandlung nötig ist. Im Beitrag werden die Phänotypen des Prädiabetes und des manifesten Typ-2-Diabetes-mellitus beschrieben und eine Ausblick auf eine zukünftige phänotypisch orientierte Diabetestherapie geworfen.

Abstract

Type 2 Diabetes is a heterogeneous disease which harbors several different pathomechanistic entities. For a successful prevention, it is important to understand the exact pathomechanisms. Overt type 2 Diabetes usually develops through an intermediary state called prediabetes, which is also heterogeneous. This state is especially important, because it already confers a higher risk for diabetes-associated complications. Therefore, detection of prediabetes and prevention of its progression to diabetes would be desirable. In this review, we describe the phenotypes of prediabetes and type 2 diabetes. We also try to envision the first steps of a future phenotype-oriented diabetes therapy.

 
  • Literatur

  • 1 Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a who consultation. Diabet Med 1998; 15: 539-553
  • 2 Alonso-Magdalena P, Quesada I, Nadal A. Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat Rev Endocrinol 2011; 7: 346-353
  • 3 Benn M, Tybjærg-Hansen A, McCarthy MI et al. Nonfasting glucose, ischemic heart disease, and myocardial infarction: a mendelian randomization study. J Am Coll Cardiol 2012; 59: 2356-2365
  • 4 Bouatia-Naji N, Rocheleau G, Lommel LV et al. A polymorphism within the g6pc2 gene is associated with fasting plasma glucose levels. Science 2008; 320: 1085-1088
  • 5 Ceriello A. Postprandial hyperglycemia and diabetes complications is it time to treat?. Diabetes 2005; 54: 1-7
  • 6 De Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Letters 2008; 582: 97-105
  • 7 Florez JC. Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes?. Diabetologia 2008; 51: 1100-1110
  • 8 Fritsche A, Madaus A, Stefan N et al. Relationships among age, proinsulin conversion, and beta-cell function in nondiabetic humans. Diabetes 2002; 51 (Suppl. 01) S234-239
  • 9 Genuth S, Alberti KGMM, Bennett P et al. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 2003; 26: 3160-3167
  • 10 Gerstein HC, Santaguida P, Raina P et al. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Res Clin Pract 2007; 78: 305-312
  • 11 Hallschmid M, Schultes B. Central nervous insulin resistance: a promising target in the treatment of metabolic and cognitive disorders?. Diabetologia 2009; 52: 2264-2269
  • 12 Heideman WH, Middelkoop BJC, Nierkens V et al. Changing the odds. what do we learn from prevention studies targeted at people with a positive family history of type 2 diabetes?. Prim Care Diabetes 2011; 5: 215-221
  • 13 Heni M, Ketterer C, Thamer C et al. Glycemia determines the effect of type 2 diabetes risk genes on insulin secretion. Diabetes 2010; 59: 3247-3252
  • 14 Herzberg Schäfer S, Heni M, Stefan N et al. Impairment of glp1-induced insulin secretion: role of genetic background, insulin resistance and hyperglycaemia. Diabetes Obes Metab 2012; 14: 85-90
  • 15 DECODE Study Group. Is the current definition for diabetes relevant to mortality risk from all causes and cardiovascular and noncardiovascular diseases?. Diabetes Care 2003; 26: 688-696
  • 16 Kahn SE, Prigeon RL, McCulloch DK et al. Quantification of the relationship between insulin sensitivity and β-cell function in human subjects: evidence for a hyperbolic function. Diabetes 1993; 42: 1663-1672
  • 17 Ketterer C, Tschritter O, Preissl H et al. Insulin sensitivity of the human brain. Diabetes Res. Clin Pract 2011; 93 (Suppl. 01) S47-51
  • 18 Kitabchi AE, Temprosa M, Knowler WC et al. Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: effects of lifestyle intervention and metformin. Diabetes 2005; 54: 2404-2414
  • 19 Knoch K-P, Bergert H, Borgonovo B et al. Polypyrimidine tract-binding protein promotes insulin secretory granule biogenesis. Nat Cell Biol 2004; 6: 207-214
  • 20 Lindström J, Neumann A, Sheppard KE et al. Take action to prevent diabetes – the image toolkit for the prevention of type 2 diabetes in europe. Horm Metab Res 2010; 42 (Suppl. 01) S37-55
  • 21 Meier JJ, Veldhuis JD, Butler PC. Pulsatile insulin secretion dictates systemic insulin delivery by regulating hepatic insulin extraction in humans. Diabetes 2005; 54: 1649-1656
  • 22 Müssig K, Staiger H, Machicao F et al. Genetic variants affecting incretin sensitivity and incretin secretion. Diabetologia 2010; 53: 2289-2297
  • 23 O’Neill MS, Veves A, Sarnat JA et al. Air pollution and inflammation in type 2 diabetes: a mechanism for susceptibility. Occup Environ Med 2007; 64: 373-379
  • 24 Osei K, Schuster DP. Decreased insulin-mediated but not non-insulin-dependent glucose disposal rates in glucose intolerance and type ii diabetes in african (ghanaian) immigrants. Am J Med Sci 1996; 311: 113-121
  • 25 Paulweber B, Valensi P, Lindström J et al. A european evidence-based guideline for the prevention of type 2 diabetes. Horm Metab Res 2010; 42 (Suppl. 01) S3-36
  • 26 Prentki M. Islet cell failure in type 2 diabetes. J Clin Invest 2006; 116: 1802-1812
  • 27 Rasmussen-Torvik LJ, Li M, Kao WH et al. Association of a fasting glucose genetic risk score with subclinical atherosclerosis: the atherosclerosis risk in communities (aric) study. Diabetes 2011; 60: 331-335
  • 28 Rathmann W, Scheidt-Nave C, Roden M et al. Type 2 diabetes: prevalence and relevance of genetic and acquired factors for its prediction. Dtsch Arztebl Int 2013; 110: 331-337
  • 29 Rittig K, Staib K, Machann J et al. Perivascular fatty tissue at the brachial artery is linked to insulin resistance but not to local endothelial dysfunction. Diabetologia 2008; 51: 2093-2099
  • 30 Sargis RM. The hijacking of cellular signaling and the diabetes epidemic: mechanisms of environmental disruption of insulin action and glucose homeostasis. Diabetes Metab J 2014; 38: 13-24
  • 31 Schulze MB, Hoffmann K, Boeing H et al. An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes. Dia Care 2007; 30: 510-515
  • 32 Schwarz PE, Greaves CJ, Lindström J et al. Nonpharmacological interventions for the prevention of type 2 diabetes mellitus. Nat Rev Endocrinol 2012; 8: 363-373
  • 33 Sourij H, Saely CH, Schmid F et al. Post-challenge hyperglycaemia is strongly associated with future macrovascular events and total mortality in angiographied coronary patients. Eur Heart J 2010; 31: 1583-1590
  • 34 Staiger H, Machicao F, Fritsche A et al. Pathomechanisms of type 2 diabetes genes. Endocr Rev 2009; 30: 557-585
  • 35 Stančáková A, Kuulasmaa T, Paananen J et al. Association of 18 confirmed susceptibility loci for type 2 diabetes with indices of insulin release, proinsulin conversion, and insulin sensitivity in 5,327 nondiabetic finnish men. Diabetes 2009; 58: 2129-2136
  • 36 Stefan N, Häring H-U. The metabolically benign and malignant fatty liver. Diabetes 2011; 60: 2011-2017
  • 37 Stefan N, Häring H-U. The role of hepatokines in metabolism. Nat Rev Endocrinol 2013; 9: 144-152
  • 38 Stefan N, Kantartzis K, Machann J et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med 2008; 168: 1609-1616
  • 39 Tabák A, Jokela M, Akbaraly T et al. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the whitehall ii study. Lancet 2009; 373: 2215-2221
  • 40 Tabák AG, Herder C, Rathmann W et al. Prediabetes: a high-risk state for diabetes development. Lancet 2012; 379: 2279-2290
  • 41 Tarussio D, Metref S, Seyer P et al. Nervous glucose sensing regulates postnatal β cell proliferation and glucose homeostasis. J Clin Invest 2013; 124: 413-424
  • 42 Tschritter O, Preissl H, Hennige AM et al. High cerebral insulin sensitivity is associated with loss of body fat during lifestyle intervention. Diabetologia 2012; 55: 175-182
  • 43 Utzschneider KM, Prigeon RL, Faulenbach MV et al. Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Dia Care 2009; 32: 335-341
  • 44 Vogt MC, Paeger L, Hess S et al. Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell 2014; 156: 495-509
  • 45 Wagner R, Machann J, Lehmann R et al. Exercise-induced albuminuria is associated with perivascular renal sinus fat in individuals at increased risk of type 2 diabetes. Diabetologia 2012; 55: 2054-2058
  • 46 Wagner R, Staiger H, Ullrich S et al. Untangling the interplay of genetic and metabolic influences on beta-cell function: examples of potential therapeutic implications involving TCF7L2 and FFAR1. Mol Metab 2014; 3: 261-267
  • 47 Wagner R, Thorand B, Osterhoff MA et al. Family history of diabetes is associated with higher risk for prediabetes: a multicentre analysis from the german center for diabetes research. Diabetologia 2013; 56: 2176-2180
  • 48 Walford GA, Green T, Neale B et al. Common genetic variants differentially influence the transition from clinically defined states of fasting glucose metabolism. Diabetologia 2012; 55: 331-339
  • 49 Weyer C, Bogardus C, Mott DM et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 1999; 104: 787-794