Z Geburtshilfe Neonatol 2014; 218(02): 56-63
DOI: 10.1055/s-0034-1371849
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Beurteilung der fetalen kardialen Funktion – etablierte und neue Methoden

Assessment of Fetal Cardiac Function – Established and Novel Methods
C. Enzensberger
1   Abteilung für Pränatalmedizin und gynäkologische Sonografie, Zentrum für Frauenheilkunde und Geburtshilfe, Justus-Liebig Universität Gießen und UKGM, Standorte Gießen und Marburg
,
A. Tenzer
1   Abteilung für Pränatalmedizin und gynäkologische Sonografie, Zentrum für Frauenheilkunde und Geburtshilfe, Justus-Liebig Universität Gießen und UKGM, Standorte Gießen und Marburg
,
J. Degenhardt
1   Abteilung für Pränatalmedizin und gynäkologische Sonografie, Zentrum für Frauenheilkunde und Geburtshilfe, Justus-Liebig Universität Gießen und UKGM, Standorte Gießen und Marburg
,
A. Kawecki
1   Abteilung für Pränatalmedizin und gynäkologische Sonografie, Zentrum für Frauenheilkunde und Geburtshilfe, Justus-Liebig Universität Gießen und UKGM, Standorte Gießen und Marburg
,
R. Axt-Fliedner
1   Abteilung für Pränatalmedizin und gynäkologische Sonografie, Zentrum für Frauenheilkunde und Geburtshilfe, Justus-Liebig Universität Gießen und UKGM, Standorte Gießen und Marburg
› Author Affiliations
Further Information

Publication History

eingereicht 13 September 2013

angenommen 16 nach Überarbeitung January 2014

Publication Date:
30 April 2014 (online)

Zusammenfassung

Zahlreiche maternale (Diabetes, Präeklampsie) und fetale Auffälligkeiten (uteroplazentare Dysfunktion, Hydrops, Infektionen, Vitien) können beim Feten zu einer Beeinträchtigung der Herzfunktion führen. Hierzu zählen eine Erhöhung der Vor- oder Nachlast, Herzkompression, Myokardschaden, Hypoxie und Hyperglykämie. Neben bereits etablierten Methoden wie M-Mode, Farb- und konventionellem Spektraldoppler sind u. a. auch neuere Techniken wie Gewebedoppler und Speckle Tracking zur Überwachung der kardialen Funktion verfügbar. Einige dieser Messtechniken haben bis dato allerdings noch keinen Einzug gehalten in die klinischen Routineuntersuchungen, da entweder eine Validierung noch aussteht und/oder die Methode noch zu zeitaufwändig ist. Andere Techniken befinden sich aktuell erst in der Erprobungsphase und sind daher zunächst Gegenstand rein wissenschaftlicher Untersuchungen. Neuheiten wie das Speckle Tracking, die ihren Ursprung in der Erwachsenenkardiologie haben, sind derzeit aufgrund der geringeren Herzgröße, der höheren Herzfrequenz, den fetalen und maternalen Bewegungsartefakten sowie zuletzt auch bedingt durch eine fehlende fetale EKG-Ableitung nur eingeschränkt aussagekräftig und sollten daher kritisch eingesetzt werden.

Abstract

Numerous maternal (diabetes, preeclampsia) and fetal pathologies (uteroplacental dysfunction, hydrops, infection, congenital heart disease) can lead to cardiac dysfunction in the fetus. This includes increase of pre- and afterload, compression of the heart, myocardial damage, hypoxia and hyperglycemia. Beside already established methods like m-mode and pulse-waved Doppler, new promising technologies like tissue Doppler and speckle tracking are available for monitoring fetal cardiac function. Some of these new techniques have not been part of clinical routine yet because no validation has been performed so far and/or the technique is too time-consuming. Other technologies are currently being tested and only part of research projects. Innovations like speckle tracking that have its seeds in adult cardiology, are still limited because of the smallness of the fetal heart, the higher heart rate, fetal and maternal moving artefacts and finally because of a missing fetal ECG signal. Therefore their application should be performed critically.

 
  • Literatur

  • 1 Allan LD, Joseph MC, Boyd EG et al. M-mode echocardiography in the developing human fetus. Br Heart J 1982; 47: 573-583
  • 2 Sahn D, Kisslo J. Report of the Council on Scientific Affairs: ultrasonic imaging of the heart: report of the Ultrasonography Task Force. Arch Intern Med 1991; 151: 1288-1294
  • 3 Brooks PA, Khoo NS, Mackie AS et al. Right ventricular function in fetal hypoplastic left heart syndrome. J Am Soc Echocardiogr 2012; 25: 1068-1074
  • 4 Natarajan S, Szwast A, Tian Z et al. Right ventricular mechanics in the fetus with hypoplastic left heart syndrome. J Am Soc Echocardiogr 2013; 26: 515-520
  • 5 Barker DJ, Osmond C, Golding J et al. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 1989; 298: 564-567
  • 6 Crispi F, Hernandez-Andrade E, Pelsers M et al. Cardiac dysfunction and cell damage across clinical stages of severity in growth-restricted fetuses. Am J Obstet Gynecol 2008; 199: 254.e1-254.e8
  • 7 Rychik J. Fetal cardiovascular physiology. Pediatr Cardiol 2004; 25: 201-209
  • 8 Guyton AC, Hall JE. Textbook of Medical Physiology. ed 11 Philadelphia: Elsevier Saunder; 2006
  • 9 Sutherland GR, Di Salvo G, Claus P et al. Strain and strain rate imaging: A new clinical approach to quantifying regional myocardial function. J Am Soc Echocardiogr 2004; 17: 788-802
  • 10 Storaa C, Cain P, Olstad B et al. Tissue motion imaging of the left ventricle – quantification of myocardial strain, velocity, acceleration and displacement in a single image. Eur J Echocardiogr 2004; 5: 375-385
  • 11 Huhta JC. Guidelines for the evaluation of heart failure in the fetus with or without hydrops. Pediatr Cardiol 2004; 25: 274-286
  • 12 Rychik J, Tian Z, Bebbington M et al. The twin-twin transfusion syndrome: spectrum of cardiovascular abnormality and development of a cardiovascular score to assess severity of disease. Am J Obstet Gynecol 2007; 197: 392.e1-392.e8
  • 13 Bijnens B, Cikes M, Butakoff C et al. Myocardial motion and deformation – what does it tell us and how does it relate to function?. Fetal Diagn Ther 2012; 32: 5-16
  • 14 Bijnens BH, Cikes M, Claus P et al. Velocity and deformation imaging for the assessment of myocardial dysfunction. Eur J Echocardiogr 2009; 10: 216-226
  • 15 Crispi F, Gratacós E. Fetal cardiac function: Technical considerations and potential research and clinical applications. Fetal Diagn Ther 2012; 32: 47-64
  • 16 Streeter DD. Gross morphology and fiber geometry of the heart. Handbook of Physiology, The Cardiovascular System. Berne RM, Sperelakis N, Geiger SR. eds. Am Physiol SOC. Williams & Wilkins Co.; Baltimore: 1979: 61-112
  • 17 Greenhaum RA, Ho SY, Gibson DG et al. Left ventricular fibre architecture in man. Br Heart J 1981; 45: 248-263
  • 18 Torrent-Guasp F. Estructura y funcio´n del corazo´ n. Rev Esp Cardiol 1998; 51: 91-102
  • 19 Sedmera D. Function and form in the developing cardiovascular system. Cardiovasc Res 2011; 91: 252-259
  • 20 Tutschek B, Schmidt KG. Sonographic assessment of fetal cardiac function: introduction and direct measurement of cardiac function. Ultraschall Med 2012; 33: 236-244
  • 21 Godfrey ME, Messing B, Valsky DV et al. Mini-review of fetal cardiac function: M-mode and 4D-STIC. Fetal Diagn Ther 2012; 32: 17-21
  • 22 DeVore GR. Assessing fetal cardiac ventricular function. Semin Fetal Neonatal Med 2005; 10: 515-541
  • 23 DeVore GR, Siassi B, Platt LD. Fetal echocardiography. IV. M-mode assessment of ventricular size and contractility during the second and third trimesters of pregnancy in the normal fetus. Am J Obstet Gynecol 1984; 150: 981-988
  • 24 Yagel S, Silverman NH, Gembruch U. Fetal Cardiology: Embryology, Genetics, Physiology, Echocardiographic Evaluation, Diagnosis and Perinatal Management of Cardiac Diseases. ed 2 New York: Informa Healthcare USA; 2009
  • 25 Teichholz LE, Kreulen T, Herman MV et al. Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy. Am J Cardiol 1976; 37: 7-11
  • 26 Hsieh YY, Chang FC, Tsai HD et al. Longitudinal survey of fetal ventricular ejection and shortening fraction throughout pregnancy. Ultrasound Obstet Gynecol 2000; 16: 46-48
  • 27 Carvalho JS, O’Sullivan C, Shinebourne EA et al. Right and left ventricular long-axis function in the fetus using angular M-mode. Ultrasound Obstet Gynecol 2001; 18: 619-622
  • 28 Germanakis I, Pepes S, Sifakis S et al. Fetal longitudinal myocardial function assessment by anatomic M-mode. Fetal Diagn Ther 2012; 32: 65-71
  • 29 Mielke G, Benda N. Cardiac output and central distribution of blood flow in the human fetus. Circulation 2001; 103: 1662-1668
  • 30 Kenny JF, Plappert T, Doubilet P et al. Changes in intracardiac blood flow velocities and right and left ventricular stroke volumes with gestational age in the normal human fetus: a prospective Doppler echocardiographic study. Circulation 1986; 74: 1208-1216
  • 31 Hernandez-Andrade E, Benavides Serralde JA, Cruz-Martinez R et al. Evaluation of conventional Doppler fetal cardiac function parameters: E/A ratios, outflow tracts and myocardial performance index. Fetal Diagn Ther 2012; 32: 22-29
  • 32 Reed KL, Sahn DJ, Scagnelli S et al. Doppler echocardiographic studies of diastolic function in the human fetal heart: changes during gestation. J Am Coll Cardiol 1986; 8: 391-395
  • 33 Hecher K, Campbell S, Snijders R et al. Reference ranges for fetal venous and atrioventricular blood flow parameters. Ultrasound Obstet Gynecol 1994; 4: 381-390
  • 34 Veille JC, Smith N, Zaccaro D. Ventricular filling patterns of the right and left ventricles in normally grown fetuses: a longitudinal follow-up study from early intrauterine life to age 1 year. Am J Obstet Gynecol 1999; 180: 849-858
  • 35 Mäkikallio K, McElhinney DB, Levine JC et al. Fetal aortic valve stenosis and the evolution of hypoplastic left heart syndrome: patient selection for fetal intervention. Circulation 2006; 113: 1401-1405
  • 36 Baschat AA, Harman CR. Venous Doppler in the assessment of fetal cardiovascular status. Curr Opin Obstet Gynecol 2006; 18: 156-163
  • 37 Lenz F, Chaoui R. Changes in pulmonary venous Doppler parameters in fetal cardiac defects. Ultrasound Obstet Gynecol 2006; 28: 63-70
  • 38 Van Mieghem T, DeKoninck P, Steenhaut P et al. Methods for prenatal assessment of fetal cardiac function. Prenat Diagn 2009; 29: 1193-1203
  • 39 Baschat AA, Cosmi E, Bilardo CM et al. Predictors of neonatal outcome in early-onset placental dysfunction. Obstet Gynecol 2007; 109 (Suppl. 01) 253-261
  • 40 Tei C, Ling LH, Hodge DO et al. New index of combined systolic and diastolic myocardial performance: a simple and re-producible measure of cardiac function – a study in normals and dilated cardiomyopathy. J Cardiol 1995; 26: 357-366
  • 41 Hernandez-Andrade E, López-Tenorio J, Figueroa-Diesel H et al. A modified myocardial performance (Tei) index based on the use of valve clicks improves reproducibility of fetal left cardiac function assessment. Ultrasound Obstet Gynecol 2005; 26: 227-232
  • 42 Cruz-Martínez R, Figueras F, Bennasar M et al. Normal reference ranges from 11 to 41 weeks’ gestation of fetal left modified myocardial performance index by conventional Doppler with the use of stringent criteria for delimitation of the time periods. Fetal Diagn Ther 2012; 32: 79-86
  • 43 Van Mieghem T, Klaritsch P, Done E et al. Assessment of fetal cardiac function before and after therapy for twin-to-twin transfusion syndrome. Am J Obstet Gynecol 2009; 200: 400.e1-400.e7
  • 44 Raboisson MJ, Fouron JC, Lamoureux J et al. Early intertwin differences in myocardial performance during the twin-to-twin transfusion syndrome. Circulation 2004; 110: 3043-3048
  • 45 Inamura N, Taketazu M, Smallhorn JF et al. Left ventricular myocardial performance in the fetus with severe tricuspid valve disease and tricuspid insufficiency. Am J Perinatol 2005; 22: 91-97
  • 46 Van Mieghem T, Gucciardo L, Doné E et al. Left ventricular cardiac function in fetuses with congenital diaphragmatic hernia and the effect of fetal endoscopic tracheal occlusion. Ultrasound Obstet Gynecol 2009; 34: 424-429
  • 47 Ichizuka K, Matsuoka R, Hasegawa J et al. The Tei index for evaluation of fetal myocardial performance in sick fetuses. Early Hum Dev 2005; 81: 273-279
  • 48 Crispi F, Hernandez-Andrade E, Pelsers MM et al. Cardiac dysfunction and cell damage across clinical stages of severity in growth-restricted fetuses. Am J Obstet Gynecol 2008; 199: 254.e1-254.e8
  • 49 Cruz-Martinez R, Figueras F, Benavides-Serralde A et al. Sequence of changes in myocardial performance index in relation to aortic isthmus and ductus venosus Doppler in fetuses with early-onset intrauterine growth restriction. Ultrasound Obstet Gynecol 2011; 38: 179-184
  • 50 Api O, Emeksiz MB, Api M et al. Modified myocardial performance index for evaluation of fetal cardiac function in pre-eclampsia. Ultrasound Obstet Gynecol 2009; 33: 51-57
  • 51 Russell NE, Foley M, Kinsley BT et al. Effect of pregestational diabetes mellitus on fetal cardiac function and structure. Am J Obstet Gynecol 2008; 199: 312.e1-312.e7
  • 52 Figueroa H, Silva MC, Kottmann C et al. Fetal evaluation of the modified-myocardial performance index in pregnancies complicated by diabetes. Prenat Diagn 2012; 32: 943-948
  • 53 Balli S, Pac FA, Ece I et al. Assessment of Cardiac Functions in Fetuses of Gestational Diabetic Mothers. Pediatr Cardiol 2013; [Epub ahead of print]
  • 54 Paladini D, Lamberti A, Teodoro A et al. Tissue Doppler imaging of the fetal heart. Ultrasound Obstet Gynecol 2000; 16: 530-535
  • 55 Sutherland GR, Hatle L, Claus P. et al. Doppler Myocardial Imaging. ed 1 Hasselt: BSWK; 2006
  • 56 Harada K, Tsuda A, Orino T et al. Tissue Doppler imaging in the normal fetus. Int J Cardiol 1999; 71: 227-234
  • 57 Comas M, Crispi F. Assessment of fetal cardiac function using tissue Doppler techniques. Fetal Diagn Ther 2012; 32: 30-38
  • 58 Comas M, Crispi F, Cruz-Martinez R et al. Usefulness of myocardial tissue Doppler vs. conventional echocardiography in the evaluation of cardiac dysfunction in early-onset intrauterine growth restriction. Am J Obstet Gynecol 2010; 203: 45.e1-45.e7
  • 59 Yu CM, Sanderson JE, Marwick TH et al. Tissue Doppler imaging a new prognosticator for cardiovascular diseases. J Am Coll Cardiol 2007; 49: 1903-1914
  • 60 Gardiner HM, Pasquini L, Wolfenden J et al. Myocardial tissue Doppler and long axis function in the fetal heart. Int J Cardiol 2006; 113: 39-47
  • 61 Tutschek B, Zimmermann T, Buck T et al. Fetal tissue Doppler echocardiography: Detection rates of cardiac structures and quantitative assessment of the fetal heart. Ultrasound Obstet Gynecol 2003; 21: 26-32 .9
  • 62 Larsen LU, Petersen OB, Norrild K et al. Strain rate derived from color Doppler myocardial imaging for assessment of fetal cardiac function. Ultrasound Obstet Gynecol 2006; 27: 210-213
  • 63 Dandel M, Lehmkuhl H, Knosalla C et al. Strain and strain rate imaging by echocardiography – basic concepts and clinical applicability. Curr Cardiol Rev 2009; 5: 133-148
  • 64 Paladini D, Lamberti A, Teodoro A et al. Tissue Doppler imaging of the fetal heart. Ultrasound Obstet Gynecol 2000; 16: 530-535
  • 65 Nii M, Roman KS, Kingdom J et al. Assessment of the evolution of normal fetal diastolic function during mid and late gestation by spectral Doppler tissue echocardiography. J Am Soc Echocardiogr 2006; 19: 1431-1437
  • 66 Perles Z, Nir A, Gavri S et al. Assessment of fetal myocardial performance using myocardial deformation analysis. Am J Cardiol 2007; 99: 993-996
  • 67 Storaa C, Aberg P, Lind B et al. Effect of angular error on tissue Doppler velocities and strain. Echocardiography 2003; 20: 581-587
  • 68 Di Salvo G, Russo MG, Paladini D et al. Two-dimensional strain to assess regional left and right ventricular longitudinal function in 100 normal foetuses. Eur J Echocardiogr 2008; 9: 754-756
  • 69 Barker PC, Houle H, Li JS et al. Global longitudinal cardiac strain and strain rate for assessment of fetal cardiac function: novel experience with velocity vector imaging. Echocardiography 2009; 26: 28-36
  • 70 Van Mieghem T, Giusca S, DeKoninck P et al. Prospective assessment of fetal cardiac function with speckle tracking in healthy fetuses and recipient fetuses of twin-to-twin transfusion syndrome. J Am Soc Echocardiogr 2010; 23: 301-308
  • 71 Matsui H, Germanakis I, Kulinskaya E et al. Temporal and spatial performance of vector velocity imaging in the human fetal heart. Ultrasound Obstet Gynecol 2011; 37: 150-157
  • 72 Germanakis I, Gardiner H. Assessment of fetal myocardial deformation using speckle tracking techniques. Fetal Diagn Ther 2012; 32: 39-46
  • 73 Willruth A, Geipel A, Berg C et al. Assessment of left ventricular global and regional longitudinal peak systolic strain, strain rate and velocity with feature tracking in healthy fetuses. Ultraschall Med 2012; 33: E293-E298
  • 74 de Isla LP, Vivas D, Zamorano J. Three-Dimensional Speckle Tracking. Current Cardiovascular Imaging Reports 2008; 1: 25-29
  • 75 Biswas M, Sudhakar S, Nanda NC et al. Two- and three-dimensional speckle tracking echocardiography: clinical applications and future directions. Echocardiography 2013; 30: 88-105
  • 76 Deng J, Rodeck CH. Current applications of fetal cardiac imaging technology. Curr Opin Obstet Gynecol 2006; 18: 177-184
  • 77 Pu DR, Zhou QC, Zhang M et al. Assessment of regional right ventricular longitudinal functions in fetus using velocity vector imaging technology. Prenat Diagn 2010; 30: 1057-1063
  • 78 Ishii T, McElhinney DB, Harrild DM et al. Circumferential and longitudinal ventricular strain in the normal human fetus. J Am Soc Echocardiogr 2012; 25: 105-111
  • 79 Rychik J, Zeng S, Bebbington M et al. Speckle tracking-derived myocardial tissue deformation imaging in twin-twin transfusion syndrome: Differences in strain and strain rate between donor and recipient twins. Fetal Diagn Ther 2012; 32: 131-137
  • 80 Willruth A, Geipel A, Berg C et al. Comparison of global and regional right and left ventricular longitudinal peak systolic strain, strain rate and velocity in healthy fetuses using a novel feature tracking technique. J Perinat Med 2011; 39: 549-556
  • 81 Enzensberger C, Doelle A, Tenzer A et al. First experience with three-dimensional speckle tracking (3D Wall Motion Tracking) in fetal echocardiography. Ultraschall in Med. [zur Publikation eingereicht]
  • 82 Enzensberger C, Tenzer A, Doelle A et al. Three-dimensional (3D) speckle tracking in fetal echocardiography: a new technology in assessment of fetal heart function. Ultrasound Obstet Gynecol 2013; 42s1: 24-25
  • 83 Enzensberger C, Tenzer A, Doelle A et al. Assessment of area strain, twist, torsion and rotation in fetal echocardiography using three-dimensional (3D) wall motion tracking technology. Ultrasound Obstet Gynecol 2013; 42s1: 59