Semin Neurol 2014; 34(01): 089-102
DOI: 10.1055/s-0034-1372346
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Role of Neuroimaging in HIV-Associated Neurocognitive Disorders

Mary C. Masters
1   Department of Neurology, School of Medicine, Washington University in St Louis, St Louis, Missouri
,
Beau M. Ances
1   Department of Neurology, School of Medicine, Washington University in St Louis, St Louis, Missouri
2   Department of Radiology, Washington University in St Louis, St Louis, Missouri
3   Department of Biomedical Engineering, Washington University in St Louis, St Louis, Missouri
› Author Affiliations
Further Information

Publication History

Publication Date:
08 April 2014 (online)

Abstract

Human immunodeficiency virus (HIV) enters the brain soon after seroconversion and can cause HIV-associated neurocognitive disorders (HAND). Although the more severe and progressive forms of HAND are less prevalent due to combination antiretroviral therapy (cART), ∼ 40% of HIV-infected (HIV+) patients continue to have cognitive impairment. Some HIV+ individuals who have effective plasma HIV-1 RNA suppression with cART still develop HAND. It is often difficult to diagnose HAND in the outpatient setting as detailed neuropsychological performance testing is required. Additional biomarkers that are relatively easy to obtain and clinically relevant are needed for assessing HIV-associated neuropathologic changes. Recently developed noninvasive magnetic resonance imaging (MRI) techniques have great potential to serve as biomarkers. The authors review the application of some of these neuroimaging techniques, magnetic resonance spectroscopy (MRS), volumetric MRI, diffusion tensor imaging (DTI), functional MRI (fMRI), in HIV+ individuals. Each of the neuroimaging methods offers unique insight into mechanisms underlying neuroHIV, could monitor disease progression, and may assist in evaluating the efficacy of particular cART regimens. It is hoped that considerable progress will continue to occur such that some of these neuroimaging methods will be incorporated across multiple sites and included in future HAND guidelines.

 
  • References

  • 1 Letendre SL, Ellis RJ, Everall I, Ances B, Bharti A, McCutchan JA. Neurologic complications of HIV disease and their treatment. Top HIV Med 2009; 17 (2) 46-56
  • 2 Justice AC. HIV and aging: time for a new paradigm. Curr HIV/AIDS Rep 2010; 7 (2) 69-76
  • 3 Holt JL, Kraft-Terry SD, Chang L. Neuroimaging studies of the aging HIV-1-infected brain. J Neurovirol 2012; 18 (4) 291-302
  • 4 Aberg JA, Kaplan JE, Libman H , et al; HIV Medicine Association of the Infectious Diseases Society of America. Primary care guidelines for the management of persons infected with human immunodeficiency virus: 2009 update by the HIV medicine Association of the Infectious Diseases Society of America. Clin Infect Dis 2009; 49 (5) 651-681
  • 5 Luther VP, Wilkin AM. HIV infection in older adults. Clin Geriatr Med 2007; 23 (3) 567-583 , vii
  • 6 Justice AC, Modur SP, Tate JP , et al; NA-ACCORD and VACS Project Teams. Predictive accuracy of the Veterans Aging Cohort Study index for mortality with HIV infection: a North American cross cohort analysis. J Acquir Immune Defic Syndr 2013; 62 (2) 149-163
  • 7 Heaton RK, Clifford DB, Franklin Jr DR , et al; CHARTER Group. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 2010; 75 (23) 2087-2096
  • 8 Antinori A, Arendt G, Becker JT , et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology 2007; 69 (18) 1789-1799
  • 9 Spudich S. HIV and neurocognitive dysfunction. Curr HIV/AIDS Rep 2013; 10 (3) 235-243
  • 10 Ellis RJ, Moore DJ, Childers ME , et al. Progression to neuropsychological impairment in human immunodeficiency virus infection predicted by elevated cerebrospinal fluid levels of human immunodeficiency virus RNA. Arch Neurol 2002; 59 (6) 923-928
  • 11 Liner II KJ, Ro MJ, Robertson KR. HIV, antiretroviral therapies, and the brain. Curr HIV/AIDS Rep 2010; 7 (2) 85-91
  • 12 Marra CM, Zhao Y, Clifford DB , et al; AIDS Clinical Trials Group 736 Study Team. Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS 2009; 23 (11) 1359-1366
  • 13 Robertson K, Liner J, Meeker RB. Antiretroviral neurotoxicity. J Neurovirol 2012; 18 (5) 388-399
  • 14 Hagberg L, Cinque P, Gisslen M , et al. Cerebrospinal fluid neopterin: an informative biomarker of central nervous system immune activation in HIV-1 infection. AIDS Res Ther 2010; 7: 15
  • 15 Mind Exchange Working G ; Mind Exchange Working Group. Assessment, diagnosis, and treatment of HIV-associated neurocognitive disorder: a consensus report of the mind exchange program. Clin Infect Dis 2013; 56 (7) 1004-1017
  • 16 Gannon P, Khan MZ, Kolson DL. Current understanding of HIV-associated neurocognitive disorders pathogenesis. Curr Opin Neurol 2011; 24 (3) 275-283
  • 17 Valcour V, Paul R, Chiao S, Wendelken LA, Miller B. Screening for cognitive impairment in human immunodeficiency virus. Clin Infect Dis 2011; 53 (8) 836-842
  • 18 Sperling RA, Aisen PS, Beckett LA , et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011; 7 (3) 280-292
  • 19 Sathekge M, Goethals I, Maes A, van de Wiele C. Positron emission tomography in patients suffering from HIV-1 infection. Eur J Nucl Med Mol Imaging 2009; 36 (7) 1176-1184
  • 20 Cysique LA, Moffat K, Moore DM , et al. HIV, vascular and aging injuries in the brain of clinically stable HIV-infected adults: a (1)H MRS study. PLoS ONE 2013; 8 (4) e61738
  • 21 Lentz MR, Kim WK, Kim H , et al. Alterations in brain metabolism during the first year of HIV infection. J Neurovirol 2011; 17 (3) 220-229
  • 22 Harezlak J, Buchthal S, Taylor M , et al; HIV Neuroimaging Consortium. Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. AIDS 2011; 25 (5) 625-633
  • 23 Descamps M, Hyare H, Stebbing J, Winston A. Magnetic resonance imaging and spectroscopy of the brain in HIV disease. J HIV Ther 2008; 13 (3) 55-58
  • 24 Kantarci K. Proton MRS in mild cognitive impairment. J Magn Reson Imaging 2013; 37 (4) 770-777
  • 25 Valcour V, Chalermchai T, Sailasuta N , et al; RV254/SEARCH 010 Study Group. Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis 2012; 206 (2) 275-282
  • 26 Sailasuta N, Ross W, Ananworanich J , et al; RV254/SEARCH 010 protocol teams. Change in brain magnetic resonance spectroscopy after treatment during acute HIV infection. PLoS ONE 2012; 7 (11) e49272
  • 27 Iannucci G, Rovaris M, Giacomotti L, Comi G, Filippi M. Correlation of multiple sclerosis measures derived from T2-weighted, T1-weighted, magnetization transfer, and diffusion tensor MR imaging. AJNR Am J Neuroradiol 2001; 22 (8) 1462-1467
  • 28 Cardenas VA, Meyerhoff DJ, Studholme C , et al. Evidence for ongoing brain injury in human immunodeficiency virus-positive patients treated with antiretroviral therapy. J Neurovirol 2009; 15 (4) 324-333
  • 29 Mohamed MA, Barker PB, Skolasky RL , et al. Brain metabolism and cognitive impairment in HIV infection: a 3-T magnetic resonance spectroscopy study. Magn Reson Imaging 2010; 28 (9) 1251-1257
  • 30 Paul RH, Ernst T, Brickman AM , et al; ACTG 301 team; ACTG 700 team; HIV MRS Consortium. Relative sensitivity of magnetic resonance spectroscopy and quantitative magnetic resonance imaging to cognitive function among nondemented individuals infected with HIV. J Int Neuropsychol Soc 2008; 14 (5) 725-733
  • 31 Yiannoutsos CT, Nakas CT, Navia BA ; proton MRS Consortium. Assessing multiple-group diagnostic problems with multi-dimensional receiver operating characteristic surfaces: application to proton MR Spectroscopy (MRS) in HIV-related neurological injury. Neuroimage 2008; 40 (1) 248-255
  • 32 Ernst T, Jiang CS, Nakama H, Buchthal S, Chang L. Lower brain glutamate is associated with cognitive deficits in HIV patients: a new mechanism for HIV-associated neurocognitive disorder. J Magn Reson Imaging 2010; 32 (5) 1045-1053
  • 33 Chang L, Ernst T, Leonido-Yee M , et al. Highly active antiretroviral therapy reverses brain metabolite abnormalities in mild HIV dementia. Neurology 1999; 53 (4) 782-789
  • 34 Tarasów E, Wiercińska-Drapało A, Jaroszewicz J , et al. Antiretroviral therapy and its influence on the stage of brain damage in patients with HIV - 1H MRS evaluation. Med Sci Monit 2004; 10 (Suppl. 03) 101-106
  • 35 Schifitto G, Yiannoutsos CT, Ernst T , et al; ACTG 5114 Team. Selegiline and oxidative stress in HIV-associated cognitive impairment. Neurology 2009; 73 (23) 1975-1981
  • 36 Robertson KR, Su Z, Margolis DM , et al; A5170 Study Team. Neurocognitive effects of treatment interruption in stable HIV-positive patients in an observational cohort. Neurology 2010; 74 (16) 1260-1266
  • 37 Schweinsburg BC, Taylor MJ, Alhassoon OM , et al; HNRC Group. Brain mitochondrial injury in human immunodeficiency virus-seropositive (HIV+) individuals taking nucleoside reverse transcriptase inhibitors. J Neurovirol 2005; 11 (4) 356-364
  • 38 Klauschen F, Goldman A, Barra V, Meyer-Lindenberg A, Lundervold A. Evaluation of automated brain MR image segmentation and volumetry methods. Hum Brain Mapp 2009; 30 (4) 1310-1327
  • 39 Fjell AM, Westlye LT, Amlien I , et al. High consistency of regional cortical thinning in aging across multiple samples. Cereb Cortex 2009; 19 (9) 2001-2012
  • 40 Dal Pan GJ, McArthur JH, Aylward E , et al. Patterns of cerebral atrophy in HIV-1-infected individuals: results of a quantitative MRI analysis. Neurology 1992; 42 (11) 2125-2130
  • 41 Fennema-Notestine C, Ellis RJ, Archibald SL , et al; CHARTER Group. Increases in brain white matter abnormalities and subcortical gray matter are linked to CD4 recovery in HIV infection. J Neurovirol 2013; 19 (4) 393-401
  • 42 Jernigan TL, Archibald SL, Fennema-Notestine C , et al; CHARTER Group. Clinical factors related to brain structure in HIV: the CHARTER study. J Neurovirol 2011; 17 (3) 248-257
  • 43 Dewey J, Hana G, Russell T , et al; HIV Neuroimaging Consortium. Reliability and validity of MRI-based automated volumetry software relative to auto-assisted manual measurement of subcortical structures in HIV-infected patients from a multisite study. Neuroimage 2010; 51 (4) 1334-1344
  • 44 Heindel WC, Jernigan TL, Archibald SL, Achim CL, Masliah E, Wiley CA. The relationship of quantitative brain magnetic resonance imaging measures to neuropathologic indexes of human immunodeficiency virus infection. Arch Neurol 1994; 51 (11) 1129-1135
  • 45 Aylward EH, Henderer JD, McArthur JC , et al. Reduced basal ganglia volume in HIV-1-associated dementia: results from quantitative neuroimaging. Neurology 1993; 43 (10) 2099-2104
  • 46 Aylward EH, Brettschneider PD, McArthur JC , et al. Magnetic resonance imaging measurement of gray matter volume reductions in HIV dementia. Am J Psychiatry 1995; 152 (7) 987-994
  • 47 Stout JC, Ellis RJ, Jernigan TL , et al; HIV Neurobehavioral Research Center Group. Progressive cerebral volume loss in human immunodeficiency virus infection: a longitudinal volumetric magnetic resonance imaging study. Arch Neurol 1998; 55 (2) 161-168
  • 48 Heaps JM, Joska J, Hoare J , et al. Neuroimaging markers of human immunodeficiency virus infection in South Africa. J Neurovirol 2012; 18 (3) 151-156
  • 49 Thompson PM, Dutton RA, Hayashi KM , et al. Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+ T lymphocyte decline. Proc Natl Acad Sci U S A 2005; 102 (43) 15647-15652
  • 50 Ances BM, Ortega M, Vaida F, Heaps J, Paul R. Independent effects of HIV, aging, and HAART on brain volumetric measures. J Acquir Immune Defic Syndr 2012; 59 (5) 469-477
  • 51 Ragin AB, Du H, Ochs R , et al. Structural brain alterations can be detected early in HIV infection. Neurology 2012; 79 (24) 2328-2334
  • 52 Cohen RA, Harezlak J, Schifitto G , et al. Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the highly active antiretroviral therapy era. J Neurovirol 2010; 16 (1) 25-32
  • 53 Patel SH, Kolson DL, Glosser G , et al. Correlation between percentage of brain parenchymal volume and neurocognitive performance in HIV-infected patients. AJNR Am J Neuroradiol 2002; 23 (4) 543-549
  • 54 Cohen RA, Harezlak J, Gongvatana A , et al; HIV Neuroimaging Consortium. Cerebral metabolite abnormalities in human immunodeficiency virus are associated with cortical and subcortical volumes. J Neurovirol 2010; 16 (6) 435-444
  • 55 Pfefferbaum A, Rosenbloom MJ, Sassoon SA , et al. Regional brain structural dysmorphology in human immunodeficiency virus infection: effects of acquired immune deficiency syndrome, alcoholism, and age. Biol Psychiatry 2012; 72 (5) 361-370
  • 56 Castelo JM, Courtney MG, Melrose RJ, Stern CE. Putamen hypertrophy in nondemented patients with human immunodeficiency virus infection and cognitive compromise. Arch Neurol 2007; 64 (9) 1275-1280
  • 57 Thames AD, Foley JM, Wright MJ , et al. Basal ganglia structures differentially contribute to verbal fluency: evidence from Human Immunodeficiency Virus (HIV)-infected adults. Neuropsychologia 2012; 50 (3) 390-395
  • 58 Becker JT, Sanders J, Madsen SK , et al; Multicenter AIDS Cohort Study. Subcortical brain atrophy persists even in HAART-regulated HIV disease. Brain Imaging Behav 2011; 5 (2) 77-85
  • 59 Sullivan EV, Rosenbloom MJ, Rohlfing T, Kemper CA, Deresinski S, Pfefferbaum A. Pontocerebellar contribution to postural instability and psychomotor slowing in HIV infection without dementia. Brain Imaging Behav 2011; 5 (1) 12-24
  • 60 Li C, Zhang X, Komery A, Li Y, Novembre FJ, Herndon JG. Longitudinal diffusion tensor imaging and perfusion MRI investigation in a macaque model of neuro-AIDS: a preliminary study. Neuroimage 2011; 58 (1) 286-292
  • 61 Kallianpur KJ, Shikuma C, Kirk GR , et al. Peripheral blood HIV DNA is associated with atrophy of cerebellar and subcortical gray matter. Neurology 2013; 80 (19) 1792-1799
  • 62 Ragin AB, D'Souza G, Reynolds S , et al. Platelet decline as a predictor of brain injury in HIV infection. J Neurovirol 2011; 17 (5) 487-495
  • 63 Durazzo TC, Rothlind JC, Cardenas VA, Studholme C, Weiner MW, Meyerhoff DJ. Chronic cigarette smoking and heavy drinking in human immunodeficiency virus: consequences for neurocognition and brain morphology. Alcohol 2007; 41 (7) 489-501
  • 64 McMurtray A, Nakamoto B, Shikuma C, Valcour V. Small-vessel vascular disease in human immunodeficiency virus infection: the Hawaii aging with HIV cohort study. Cerebrovasc Dis 2007; 24 (2-3) 236-241
  • 65 Becker JT, Maruca V, Kingsley LA , et al; Multicenter AIDS Cohort Study. Factors affecting brain structure in men with HIV disease in the post-HAART era. Neuroradiology 2012; 54 (2) 113-121
  • 66 Towgood KJ, Pitkanen M, Kulasegaram R , et al. Mapping the brain in younger and older asymptomatic HIV-1 men: frontal volume changes in the absence of other cortical or diffusion tensor abnormalities. Cortex 2012; 48 (2) 230-241
  • 67 Valcour VG. HIV, aging, and cognition: emerging issues. Top Antivir Med 2013; 21 (3) 119-123
  • 68 Tate DF, Sampat M, Harezlak J , et al; HIV Neuroimaging Consortium. Regional areas and widths of the midsagittal corpus callosum among HIV-infected patients on stable antiretroviral therapies. J Neurovirol 2011; 17 (4) 368-379
  • 69 Christensen A, Russ S, Rambaran N, Wright SW. Patient perspectives on opt-out HIV screening in a Guyanese emergency department. In Health 2012; 4 (3) 185-191
  • 70 Turner MR, Modo M. Advances in the application of MRI to amyotrophic lateral sclerosis. Expert Opin Med Diagn 2010; 4 (6) 483-496
  • 71 Chanraud S, Zahr N, Sullivan EV, Pfefferbaum A. MR diffusion tensor imaging: a window into white matter integrity of the working brain. Neuropsychol Rev 2010; 20 (2) 209-225
  • 72 Wycoco V, Shroff M, Sudhakar S, Lee W. White matter anatomy: what the radiologist needs to know. Neuroimaging Clin N Am 2013; 23 (2) 197-216
  • 73 Gongvatana A, Cohen RA, Correia S , et al. Clinical contributors to cerebral white matter integrity in HIV-infected individuals. J Neurovirol 2011; 17 (5) 477-486
  • 74 Wu Y, Storey P, Cohen BA, Epstein LG, Edelman RR, Ragin AB. Diffusion alterations in corpus callosum of patients with HIV. AJNR Am J Neuroradiol 2006; 27 (3) 656-660
  • 75 Thurnher MM, Castillo M, Stadler A, Rieger A, Schmid B, Sundgren PC. Diffusion-tensor MR imaging of the brain in human immunodeficiency virus-positive patients. AJNR Am J Neuroradiol 2005; 26 (9) 2275-2281
  • 76 Pomara N, Crandall DT, Choi SJ, Johnson G, Lim KO. White matter abnormalities in HIV-1 infection: a diffusion tensor imaging study. Psychiatry Res 2001; 106 (1) 15-24
  • 77 Müller-Oehring EM, Schulte T, Rosenbloom MJ, Pfefferbaum A, Sullivan EV. Callosal degradation in HIV-1 infection predicts hierarchical perception: a DTI study. Neuropsychologia 2010; 48 (4) 1133-1143
  • 78 Stebbins GT, Smith CA, Bartt RE , et al. HIV-associated alterations in normal-appearing white matter: a voxel-wise diffusion tensor imaging study. J Acquir Immune Defic Syndr 2007; 46 (5) 564-573
  • 79 Ragin AB, Wu Y, Storey P, Cohen BA, Edelman RR, Epstein LG. Diffusion tensor imaging of subcortical brain injury in patients infected with human immunodeficiency virus. J Neurovirol 2005; 11 (3) 292-298
  • 80 Filippi CG, Ulug AM, Ryan E, Ferrando SJ, van Gorp W. Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. AJNR Am J Neuroradiol 2001; 22 (2) 277-283
  • 81 Ragin AB, Storey P, Cohen BA, Edelman RR, Epstein LG. Disease burden in HIV-associated cognitive impairment: a study of whole-brain imaging measures. Neurology 2004; 63 (12) 2293-2297
  • 82 Ragin AB, Storey P, Cohen BA, Epstein LG, Edelman RR. Whole brain diffusion tensor imaging in HIV-associated cognitive impairment. AJNR Am J Neuroradiol 2004; 25 (2) 195-200
  • 83 Pfefferbaum A, Rosenbloom MJ, Rohlfing T, Kemper CA, Deresinski S, Sullivan EV. Frontostriatal fiber bundle compromise in HIV infection without dementia. AIDS 2009; 23 (15) 1977-1985
  • 84 Hoare J, Westgarth-Taylor J, Fouche JP , et al. A diffusion tensor imaging and neuropsychological study of prospective memory impairment in South African HIV positive individuals. Metab Brain Dis 2012; 27 (3) 289-297
  • 85 Stubbe-Drger B, Deppe M, Mohammadi S , et al; German Competence Network HIV/AIDS. Early microstructural white matter changes in patients with HIV: a diffusion tensor imaging study. BMC Neurol 2012; 12: 23
  • 86 Du H, Wu Y, Ochs R , et al. A comparative evaluation of quantitative neuroimaging measurements of brain status in HIV infection. Psychiatry Res 2012; 203 (1) 95-99
  • 87 Zhu T, Zhong J, Hu R , et al. Patterns of white matter injury in HIV infection after partial immune reconstitution: a DTI tract-based spatial statistics study. J Neurovirol 2013; 19 (1) 10-23
  • 88 Wright PW, Heaps JM, Shimony JS, Thomas JB, Ances BM. The effects of HIV and combination antiretroviral therapy on white matter integrity. AIDS 2012; 26 (12) 1501-1508
  • 89 Chen Y, An H, Zhu H , et al. White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV+ patients. Neuroimage 2009; 47 (4) 1154-1162
  • 90 Rauch A, Rainer G, Logothetis NK. The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI. Proc Natl Acad Sci U S A 2008; 105 (18) 6759-6764
  • 91 Zhang D, Raichle ME. Disease and the brain's dark energy. Nat Rev Neurol 2010; 6 (1) 15-28
  • 92 Ogawa S. Finding the BOLD effect in brain images. Neuroimage 2012; 62 (2) 608-609
  • 93 Chang L, Speck O, Miller EN , et al. Neural correlates of attention and working memory deficits in HIV patients. Neurology 2001; 57 (6) 1001-1007
  • 94 Ances B, Vaida F, Ellis R, Buxton R. Test-retest stability of calibrated BOLD-fMRI in HIV- and HIV+ subjects. Neuroimage 2011; 54 (3) 2156-2162
  • 95 Ances BM, Roc AC, Korczykowski M, Wolf RL, Kolson DL. Combination antiretroviral therapy modulates the blood oxygen level-dependent amplitude in human immunodeficiency virus-seropositive patients. J Neurovirol 2008; 14 (5) 418-424
  • 96 Chang L, Tomasi D, Yakupov R , et al. Adaptation of the attention network in human immunodeficiency virus brain injury. Ann Neurol 2004; 56 (2) 259-272
  • 97 Ernst T, Chang L, Jovicich J, Ames N, Arnold S. Abnormal brain activation on functional MRI in cognitively asymptomatic HIV patients. Neurology 2002; 59 (9) 1343-1349
  • 98 Ernst T, Yakupov R, Nakama H , et al. Declined neural efficiency in cognitively stable human immunodeficiency virus patients. Ann Neurol 2009; 65 (3) 316-325
  • 99 Juengst SB, Aizenstein HJ, Figurski J, Lopez OL, Becker JT. Alterations in the hemodynamic response function in cognitively impaired HIV/AIDS subjects. J Neurosci Methods 2007; 163 (2) 208-212
  • 100 Maki PM, Cohen MH, Weber K , et al. Impairments in memory and hippocampal function in HIV-positive vs HIV-negative women: a preliminary study. Neurology 2009; 72 (19) 1661-1668
  • 101 Tracey I, Hamberg LM, Guimaraes AR , et al. Increased cerebral blood volume in HIV-positive patients detected by functional MRI. Neurology 1998; 50 (6) 1821-1826
  • 102 Du Plessis S, Vink M, Joska J, Koutsilieri E, Stein DJ, Emsley R. HIV infection and the fronto–striatal system: a systematic review and meta-analysis of fMRI studies. AIDS 2014; ; In press
  • 103 Thomas JB, Brier MR, Snyder AZ, Vaida FF, Ances BM. Pathways to neurodegeneration: effects of HIV and aging on resting-state functional connectivity. Neurology 2013; 80 (13) 1186-1193
  • 104 Bonnet F, Amieva H, Marquant F , et al; S CO3 Aquitaine Cohort. Cognitive disorders in HIV-infected patients: are they HIV-related?. AIDS 2013; 27 (3) 391-400
  • 105 Fennema-Notestine C, Ellis RJ, Archibald SL , et al; CHARTER Group. Increases in brain white matter abnormalities and subcortical gray matter are linked to CD4 recovery in HIV infection. J Neurovirol 2013; 19 (4) 393-401
  • 106 Müller-Oehring EM, Schulte T, Rosenbloom MJ, Pfefferbaum A, Sullivan EV. Callosal degradation in HIV-1 infection predicts hierarchical perception: a DTI study. Neuropsychologia 2010; 48 (4) 1133-1143
  • 107 Pfefferbaum A, Rosenbloom MJ, Rohlfing T, Kemper CA, Deresinski S, Sullivan EV. Frontostriatal fiber bundle compromise in HIV infection without dementia. AIDS 2009; 23 (15) 1977-1985