Semin Respir Crit Care Med 2014; 35(03): 296-306
DOI: 10.1055/s-0034-1376860
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Genetics of Sarcoidosis

Annegret Fischer
1   Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
,
Johan Grunewald
2   Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine (CMM), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
,
Paolo Spagnolo
3   Department of Medical and Surgical Sciences for Children and Adults, Center for Rare Lung Diseases, University of Modena and Reggio Emilia, Modena, Italy
,
Almut Nebel
1   Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
,
Stefan Schreiber
1   Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
4   Clinic of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
,
Joachim Müller-Quernheim
5   Division of Pulmonary, Department of Medicine, University Medical Center, Freiburg, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
09 July 2014 (online)

Abstract

Sarcoidosis is a multifactorial and polygenic disorder. Recently, several novel predisposing genes have been identified by genome-wide association studies, and fast progress in molecular technologies such as systematic and large-scale resequencing will aid the discovery of further risk loci and variants. In this article, the current knowledge of its genetics will be presented, including known and candidate risk variants and loci, with a focus on loci in the human leukocyte antigen region. Some of these factors are shared with other, clinically distinct diseases. This may lead to the development of new hypotheses on pathomechanisms, which associate sarcoidosis with other granulomatous disorders but also with diseases with significantly different phenotypes. In the near future system, biology approaches will help unravel the differing and common features of these disorders and allow the development of new therapeutic strategies and tools to predict the course and response to treatment of individual patients.

 
  • References

  • 1 Sverrild A, Backer V, Kyvik KO , et al. Heredity in sarcoidosis: a registry-based twin study. Thorax 2008; 63 (10) 894-896
  • 2 Rybicki BA, Iannuzzi MC, Frederick MM , et al; ACCESS Research Group. Familial aggregation of sarcoidosis. A case-control etiologic study of sarcoidosis (ACCESS). Am J Respir Crit Care Med 2001; 164 (11) 2085-2091
  • 3 Manolio TA, Collins FS, Cox NJ , et al. Finding the missing heritability of complex diseases. Nature 2009; 461 (7265) 747-753
  • 4 Du Bois RM, Kirby M, Balbi B, Saltini C, Crystal RG. T-lymphocytes that accumulate in the lung in sarcoidosis have evidence of recent stimulation of the T-cell antigen receptor. Am Rev Respir Dis 1992; 145 (5) 1205-1211
  • 5 Müller-Quernheim J, Saltini C, Sondermeyer P, Crystal RG. Compartmentalized activation of the interleukin 2 gene by lung T lymphocytes in active pulmonary sarcoidosis. J Immunol 1986; 137 (11) 3475-3483
  • 6 Grutters JC, Sato H, Welsh KI, du Bois RM. The importance of sarcoidosis genotype to lung phenotype. Am J Respir Cell Mol Biol 2003; 29 (3, Suppl): S59-S62
  • 7 Hedfors E, Lindström F. HLA-B8/DR3 in sarcoidosis. Correlation to acute onset disease with arthritis. Tissue Antigens 1983; 22 (3) 200-203
  • 8 Löfgren S, Lundback H. The bilateral hilar lymphoma syndrome; a study of the relation to tuberculosis and sarcoidosis in 212 cases. Acta Med Scand 1952; 142 (4) 265-273
  • 9 Grunewald J, Eklund A. Löfgren's syndrome: human leukocyte antigen strongly influences the disease course. Am J Respir Crit Care Med 2009; 179 (4) 307-312
  • 10 Grunewald J, Eklund A, Olerup O. Human leukocyte antigen class I alleles and the disease course in sarcoidosis patients. Am J Respir Crit Care Med 2004; 169 (6) 696-702
  • 11 Grubić Z, Zunec R, Peros-Golubicić T , et al. HLA class I and class II frequencies in patients with sarcoidosis from Croatia: role of HLA-B8, -DRB1*0301, and -DQB1*0201 haplotype in clinical variations of the disease. Tissue Antigens 2007; 70 (4) 301-306
  • 12 Rybicki BA, Maliarik MJ, Poisson LM , et al. The major histocompatibility complex gene region and sarcoidosis susceptibility in African Americans. Am J Respir Crit Care Med 2003; 167 (3) 444-449
  • 13 Iannuzzi MC, Maliarik MJ, Poisson LM, Rybicki BA. Sarcoidosis susceptibility and resistance HLA-DQB1 alleles in African Americans. Am J Respir Crit Care Med 2003; 167 (9) 1225-1231
  • 14 Maier LA, McGrath DS, Sato H , et al. Influence of MHC class II in susceptibility to beryllium sensitization and chronic beryllium disease. J Immunol 2003; 171 (12) 6910-6918
  • 15 Foley PJ, McGrath DS, Puscinska E , et al. Human leukocyte antigen-DRB1 position 11 residues are a common protective marker for sarcoidosis. Am J Respir Cell Mol Biol 2001; 25 (3) 272-277
  • 16 Voorter CE, Drent M, van den Berg-Loonen EM. Severe pulmonary sarcoidosis is strongly associated with the haplotype HLA-DQB1*0602-DRB1*150101. Hum Immunol 2005; 66 (7) 826-835
  • 17 Berlin M, Fogdell-Hahn A, Olerup O, Eklund A, Grunewald J. HLA-DR predicts the prognosis in Scandinavian patients with pulmonary sarcoidosis. Am J Respir Crit Care Med 1997; 156 (5) 1601-1605
  • 18 Grunewald J. Review: role of genetics in susceptibility and outcome of sarcoidosis. Semin Respir Crit Care Med 2010; 31 (4) 380-389
  • 19 Rossman MD, Thompson B, Frederick M , et al; ACCESS Group. HLA-DRB1*1101: a significant risk factor for sarcoidosis in blacks and whites. Am J Hum Genet 2003; 73 (4) 720-735
  • 20 Wennerström A, Pietinalho A, Vauhkonen H , et al; Finnish Sarcoidosis Study Group. HLA-DRB1 allele frequencies and C4 copy number variation in Finnish sarcoidosis patients and associations with disease prognosis. Hum Immunol 2012; 73 (1) 93-100
  • 21 Sato H, Woodhead FA, Ahmad T , et al. Sarcoidosis HLA class II genotyping distinguishes differences of clinical phenotype across ethnic groups. Hum Mol Genet 2010; 19 (20) 4100-4111
  • 22 Suzuki H, Ota M, Meguro A , et al. Genetic characterization and susceptibility for sarcoidosis in Japanese patients: risk factors of BTNL2 gene polymorphisms and HLA class II alleles. Invest Ophthalmol Vis Sci 2012; 53 (11) 7109-7115
  • 23 Zhou Y, Shen L, Zhang Y, Jiang D, Li H. Human leukocyte antigen-A, -B, and -DRB1 alleles and sarcoidosis in Chinese Han subjects. Hum Immunol 2011; 72 (7) 571-575
  • 24 Sharma SK, Balamurugan A, Pandey RM, Saha PK, Mehra NK. Human leukocyte antigen-DR alleles influence the clinical course of pulmonary sarcoidosis in Asian Indians. Am J Respir Cell Mol Biol 2003; 29 (2) 225-231
  • 25 Ishihara M, Ohno S, Ishida T , et al. Molecular genetic studies of HLA class II alleles in sarcoidosis. Tissue Antigens 1994; 43 (4) 238-241
  • 26 Oswald-Richter K, Sato H, Hajizadeh R , et al. Mycobacterial ESAT-6 and katG are recognized by sarcoidosis CD4+ T cells when presented by the American Sarcoidosis Susceptibility Allele, DRB1*1101. J Clin Immunol 2010; 30 (1) 157-166
  • 27 Song Z, Marzilli L, Greenlee BM , et al. Mycobacterial catalase-peroxidase is a tissue antigen and target of the adaptive immune response in systemic sarcoidosis. J Exp Med 2005; 201 (5) 755-767
  • 28 Grunewald J. HLA associations and Löfgren's syndrome. Expert Rev Clin Immunol 2012; 8 (1) 55-62
  • 29 Sato H, Grutters JC, Pantelidis P , et al. HLA-DQB1*0201: a marker for good prognosis in British and Dutch patients with sarcoidosis. Am J Respir Cell Mol Biol 2002; 27 (4) 406-412
  • 30 Darlington P, Haugom-Olsen H, von Sivers K , et al. T-cell phenotypes in bronchoalveolar lavage fluid, blood and lymph nodes in pulmonary sarcoidosis—indication for an airborne antigen as the triggering factor in sarcoidosis. J Intern Med 2012; 272 (5) 465-471
  • 31 Naruse TK, Matsuzawa Y, Ota M , et al. HLA-DQB1*0601 is primarily associated with the susceptibility to cardiac sarcoidosis. Tissue Antigens 2000; 56 (1) 52-57
  • 32 Sato H, Nagai S, du Bois RM , et al. HLA-DQB1 0602 allele is associated with splenomegaly in Japanese sarcoidosis. J Intern Med 2007; 262 (4) 449-457
  • 33 Voorter CE, Drent M, Hoitsma E, Faber KG, van den Berg-Loonen EM. Association of HLA DQB1 0602 in sarcoidosis patients with small fiber neuropathy. Sarcoidosis Vasc Diffuse Lung Dis 2005; 22 (2) 129-132
  • 34 Müller-Quernheim J, Pfeifer S, Männel D, Strausz J, Ferlinz R. Lung-restricted activation of the alveolar macrophage/monocyte system in pulmonary sarcoidosis. Am Rev Respir Dis 1992; 145 (1) 187-192
  • 35 Ziegenhagen MW, Rothe ME, Zissel G, Müller-Quernheim J. Exaggerated TNFalpha release of alveolar macrophages in corticosteroid resistant sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2002; 19 (3) 185-190
  • 36 Bendtzen K, Morling N, Fomsgaard A , et al. Association between HLA-DR2 and production of tumour necrosis factor alpha and interleukin 1 by mononuclear cells activated by lipopolysaccharide. Scand J Immunol 1988; 28 (5) 599-606
  • 37 Jacob CO, Fronek Z, Lewis GD, Koo M, Hansen JA, McDevitt HO. Heritable major histocompatibility complex class II-associated differences in production of tumor necrosis factor alpha: relevance to genetic predisposition to systemic lupus erythematosus. Proc Natl Acad Sci U S A 1990; 87 (3) 1233-1237
  • 38 Seitzer U, Swider C, Stüber F , et al. Tumour necrosis factor alpha promoter gene polymorphism in sarcoidosis. Cytokine 1997; 9 (10) 787-790
  • 39 McDougal KE, Fallin MD, Moller DR , et al; ACCESS Research Group. Variation in the lymphotoxin-alpha/tumor necrosis factor locus modifies risk of erythema nodosum in sarcoidosis. J Invest Dermatol 2009; 129 (8) 1921-1926
  • 40 Labunski S, Posern G, Ludwig S, Kundt G, Bröcker EB, Kunz M. Tumour necrosis factor-alpha promoter polymorphism in erythema nodosum. Acta Derm Venereol 2001; 81 (1) 18-21
  • 41 Petković TR, Pejcić T, Videnović-Ivanov J , et al. Tumor necrosis factor alpha gene polymorphism in serbian patients with sarcoidosis. Srp Arh Celok Lek 2013; 141 (3-4) 169-172
  • 42 Somoskövi A, Zissel G, Seitzer U, Gerdes J, Schlaak M, Müller-Quernheim J. Polymorphisms at position -308 in the promoter region of the TNF-alpha and in the first intron of the TNF-beta genes and spontaneous and lipopolysaccharide-induced TNF-alpha release in sarcoidosis. Cytokine 1999; 11 (11) 882-887
  • 43 Medica I, Kastrin A, Maver A, Peterlin B. Role of genetic polymorphisms in ACE and TNF-alpha gene in sarcoidosis: a meta-analysis. J Hum Genet 2007; 52 (10) 836-847
  • 44 Grutters JC, Sato H, Pantelidis P , et al. Increased frequency of the uncommon tumor necrosis factor -857T allele in British and Dutch patients with sarcoidosis. Am J Respir Crit Care Med 2002; 165 (8) 1119-1124
  • 45 Fischer A, Nothnagel M, Franke A , et al. Association of inflammatory bowel disease risk loci with sarcoidosis, and its acute and chronic subphenotypes. Eur Respir J 2011; 37 (3) 610-616
  • 46 Kim HS, Choi D, Lim LL , et al. Association of interleukin 23 receptor gene with sarcoidosis. Dis Markers 2011; 31 (1) 17-24
  • 47 Takada T, Suzuki E, Ishida T , et al. Polymorphism in RANTES chemokine promoter affects extent of sarcoidosis in a Japanese population. Tissue Antigens 2001; 58 (5) 293-298
  • 48 Hizawa N, Yamaguchi E, Furuya K, Jinushi E, Ito A, Kawakami Y. The role of the C-C chemokine receptor 2 gene polymorphism V64I (CCR2-64I) in sarcoidosis in a Japanese population. Am J Respir Crit Care Med 1999; 159 (6) 2021-2023
  • 49 Petrek M, Drábek J, Kolek V , et al. CC chemokine receptor gene polymorphisms in Czech patients with pulmonary sarcoidosis. Am J Respir Crit Care Med 2000; 162 (3 Pt 1) 1000-1003
  • 50 Spagnolo P, Renzoni EA, Wells AU , et al. C-C chemokine receptor 2 and sarcoidosis: association with Lofgren's syndrome. Am J Respir Crit Care Med 2003; 168 (10) 1162-1166
  • 51 Valentonyte R, Hampe J, Croucher PJ , et al. Study of C-C chemokine receptor 2 alleles in sarcoidosis, with emphasis on family-based analysis. Am J Respir Crit Care Med 2005; 171 (10) 1136-1141
  • 52 Spagnolo P, Renzoni EA, Wells AU , et al. C-C chemokine receptor 5 gene variants in relation to lung disease in sarcoidosis. Am J Respir Crit Care Med 2005; 172 (6) 721-728
  • 53 Fischer A, Valentonyte R, Nebel A , et al. Female-specific association of C-C chemokine receptor 5 gene polymorphisms with Löfgren's syndrome. J Mol Med (Berl) 2008; 86 (5) 553-561
  • 54 Gazouli M, Mantzaris G, Kotsinas A , et al. Association between polymorphisms in the Toll-like receptor 4, CD14, and CARD15/NOD2 and inflammatory bowel disease in the Greek population. World J Gastroenterol 2005; 11 (5) 681-685
  • 55 Fridlender ZG, Schwartz A, Kohan M, Amir G, Glazer M, Berkman N. Association between CD14 gene polymorphisms and disease phenotype in sarcoidosis. Respir Med 2010; 104 (9) 1336-1343
  • 56 Makrythanasis P, Tzetis M, Rapti A , et al. Cystic fibrosis conductance regulator, tumor necrosis factor, interferon alpha-10, interferon alpha-17, and interferon gamma genotyping as potential risk markers in pulmonary sarcoidosis pathogenesis in Greek patients. Genet Test Mol Biomarkers 2010; 14 (4) 577-584
  • 57 Heron M, van Moorsel CHM, Grutters JC , et al. Genetic variation in GREM1 is a risk factor for fibrosis in pulmonary sarcoidosis. Tissue Antigens 2011; 77 (2) 112-117
  • 58 Vasakova M, Sterclova M, Kolesar L, Slavcev A, Skibova J, Striz I. Cytokine gene polymorphisms in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2010; 27 (1) 70-75
  • 59 Muraközy G, Gaede KI, Zissel G, Schlaak M, Müller-Quernheim J. Analysis of gene polymorphisms in interleukin-10 and transforming growth factor-beta 1 in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2001; 18 (2) 165-169
  • 60 Sakuyama K, Meguro A, Ota M , et al. Lack of association between IL10 polymorphisms and sarcoidosis in Japanese patients. Mol Vis 2012; 18: 512-518
  • 61 Takada T, Suzuki E, Morohashi K, Gejyo F. Association of single nucleotide polymorphisms in the IL-18 gene with sarcoidosis in a Japanese population. Tissue Antigens 2002; 60 (1) 36-42
  • 62 Janssen R, Grutters JC, Ruven HJT , et al. No association between interleukin-18 gene polymorphisms and haplotypes in Dutch sarcoidosis patients. Tissue Antigens 2004; 63 (6) 578-583
  • 63 Zhou Y, Yamaguchi E, Hizawa N, Nishimura M. Roles of functional polymorphisms in the interleukin-18 gene promoter in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2005; 22 (2) 105-113
  • 64 Maver A, Medica I, Salobir B, Sabovic M, Tercelj M, Peterlin B. Polymorphisms in genes coding for mediators in the interleukin cascade and their effect on susceptibility to sarcoidosis in the Slovenian population. Int J Mol Med 2007; 20 (3) 385-390
  • 65 Hutyrová B, Pantelidis P, Drábek J , et al. Interleukin-1 gene cluster polymorphisms in sarcoidosis and idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2002; 165 (2) 148-151
  • 66 Grutters JC, Sato H, Pantelidis P , et al. Analysis of IL6 and IL1A gene polymorphisms in UK and Dutch patients with sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2003; 20 (1) 20-27
  • 67 Heron M, Grutters JC, van Moorsel CH , et al. Variation in IL7R predisposes to sarcoid inflammation. Genes Immun 2009; 10 (7) 647-653
  • 68 Heron M, Grutters JC, Van Moorsel CHM , et al. Effect of variation in ITGAE on risk of sarcoidosis, CD103 expression, and chest radiography. Clin Immunol 2009; 133 (1) 117-125
  • 69 Piotrowski WJ, Górski P, Pietras T, Fendler W, Szemraj J. The selected genetic polymorphisms of metalloproteinases MMP2, 7, 9 and MMP inhibitor TIMP2 in sarcoidosis. Med Sci Monit 2011; 17 (10) CR598-CR607
  • 70 Hattori T, Konno S, Takahashi A , et al. Genetic variants in mannose receptor gene (MRC1) confer susceptibility to increased risk of sarcoidosis. BMC Med Genet 2010; 11: 151
  • 71 Daniil Z, Mollaki V, Malli F , et al. Polymorphisms and haplotypes in MyD88 are associated with the development of sarcoidosis: a candidate-gene association study. Mol Biol Rep 2013; 40 (7) 4281-4286
  • 72 Zorzetto M, Ferrarotti I, Campo I , et al. NOD2/CARD15 gene polymorphisms in idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis 2005; 22 (3) 180-185
  • 73 Akahoshi M, Ishihara M, Namba K , et al. Mutation screening of the CARD15 gene in sarcoidosis. Tissue Antigens 2008; 71 (6) 564-567
  • 74 Milman N, Nielsen OH, Hviid TVF, Fenger K. CARD15 single nucleotide polymorphisms 8, 12 and 13 are not increased in ethnic Danes with sarcoidosis. Respiration 2007; 74 (1) 76-79
  • 75 Schürmann M, Valentonyte R, Hampe J, Müller-Quernheim J, Schwinger E, Schreiber S. CARD15 gene mutations in sarcoidosis. Eur Respir J 2003; 22 (5) 748-754
  • 76 Sato H, Williams HRT, Spagnolo P , et al. CARD15/NOD2 polymorphisms are associated with severe pulmonary sarcoidosis. Eur Respir J 2010; 35 (2) 324-330
  • 77 Pabst S, Golebiewski M, Herms S , et al. Caspase recruitment domain 15 gene haplotypes in sarcoidosis. Tissue Antigens 2011; 77 (4) 333-337
  • 78 Hill MR, Papafili A, Booth H , et al. Functional prostaglandin-endoperoxide synthase 2 polymorphism predicts poor outcome in sarcoidosis. Am J Respir Crit Care Med 2006; 174 (8) 915-922
  • 79 Lopez-Campos JL, Rodriguez-Rodriguez D, Rodriguez-Becerra E , et al. Cyclooxygenase-2 polymorphisms confer susceptibility to sarcoidosis but are not related to prognosis. Respir Med 2009; 103 (3) 427-433
  • 80 Lopez-Campos JL, Rodriguez-Rodriguez D, Rodriguez-Becerra E , et al. Association of the 3050G>C polymorphism in the cyclooxygenase 2 gene with systemic sarcoidosis. Arch Med Res 2008; 39 (5) 525-530
  • 81 Maliarik MJ, Chen KM, Sheffer RG , et al. The natural resistance-associated macrophage protein gene in African Americans with sarcoidosis. Am J Respir Cell Mol Biol 2000; 22 (6) 672-675
  • 82 Dubaniewicz A, Jamieson SE, Dubaniewicz-Wybieralska M, Fakiola M, Nancy Miller E, Blackwell JM. Association between SLC11A1 (formerly NRAMP1) and the risk of sarcoidosis in Poland. Eur J Hum Genet 2005; 13 (7) 829-834
  • 83 Akçakaya P, Azeroglu B, Even I , et al. The functional SLC11A1 gene polymorphisms are associated with sarcoidosis in Turkish population. Mol Biol Rep 2012; 39 (4) 5009-5016
  • 84 Akahoshi M, Ishihara M, Remus N , et al. Association between IFNA genotype and the risk of sarcoidosis. Hum Genet 2004; 114 (5) 503-509
  • 85 Maver A, Medica I, Salobir B, Tercelj M, Peterlin B. Genetic variation in osteopontin gene is associated with susceptibility to sarcoidosis in Slovenian population. Dis Markers 2009; 27 (6) 295-302
  • 86 Niimi T, Sato S, Sugiura Y , et al. Transforming growth factor-beta gene polymorphism in sarcoidosis and tuberculosis patients. Int J Tuberc Lung Dis 2002; 6 (6) 510-515
  • 87 Jonth AC, Silveira L, Fingerlin TE , et al; ACCESS Group. TGF-beta 1 variants in chronic beryllium disease and sarcoidosis. J Immunol 2007; 179 (6) 4255-4262
  • 88 Pabst S, Fränken T, Schönau J , et al. Transforming growth factor-beta gene polymorphisms in different phenotypes of sarcoidosis. Eur Respir J 2011; 38 (1) 169-175
  • 89 Kruit A, Grutters JC, Ruven HJT , et al. Transforming growth factor-β gene polymorphisms in sarcoidosis patients with and without fibrosis. Chest 2006; 129 (6) 1584-1591
  • 90 Veltkamp M, van Moorsel CH, Rijkers GT, Ruven HJ, Grutters JC. Genetic variation in the Toll-like receptor gene cluster (TLR10-TLR1-TLR6) influences disease course in sarcoidosis. Tissue Antigens 2012; 79 (1) 25-32
  • 91 Veltkamp M, Wijnen PAHM, van Moorsel CHM , et al. Linkage between Toll-like receptor (TLR) 2 promotor and intron polymorphisms: functional effects and relevance to sarcoidosis. Clin Exp Immunol 2007; 149 (3) 453-462
  • 92 Sato M, Kawagoe T, Meguro A , et al. Toll-like receptor 2 (TLR2) gene polymorphisms are not associated with sarcoidosis in the Japanese population. Mol Vis 2011; 17: 731-736
  • 93 Pabst S, Baumgarten G, Stremmel A , et al. Toll-like receptor (TLR) 4 polymorphisms are associated with a chronic course of sarcoidosis. Clin Exp Immunol 2006; 143 (3) 420-426
  • 94 Veltkamp M, Grutters JC, van Moorsel CH, Ruven HJ, van den Bosch JM. Toll-like receptor (TLR) 4 polymorphism Asp299Gly is not associated with disease course in Dutch sarcoidosis patients. Clin Exp Immunol 2006; 145 (2) 215-218
  • 95 Schürmann M, Kwiatkowski R, Albrecht M , et al. Study of Toll-like receptor gene loci in sarcoidosis. Clin Exp Immunol 2008; 152 (3) 423-431
  • 96 Veltkamp M, Van Moorsel CH, Rijkers GT, Ruven HJ, Van Den Bosch JM, Grutters JC. Toll-like receptor (TLR)-9 genetics and function in sarcoidosis. Clin Exp Immunol 2010; 162 (1) 68-74
  • 97 Pabst S, Bradler O, Gillissen A, Nickenig G, Skowasch D, Grohe C. Toll-like receptor-9 polymorphisms in sarcoidosis and chronic obstructive pulmonary disease. Adv Exp Med Biol 2013; 756: 239-245
  • 98 Niimi T, Tomita H, Sato S , et al. Vitamin D receptor gene polymorphism in patients with sarcoidosis. Am J Respir Crit Care Med 1999; 160 (4) 1107-1109
  • 99 Morohashi K, Takada T, Omori K, Suzuki E, Gejyo F. Vascular endothelial growth factor gene polymorphisms in Japanese patients with sarcoidosis. Chest 2003; 123 (5) 1520-1526
  • 100 Seyhan EC, Cetinkaya E, Altin S , et al. Vascular endothelial growth factor gene polymorphisms in Turkish patients with sarcoidosis. Tissue Antigens 2008; 72 (2) 162-165
  • 101 Pabst S, Karpushova A, Dìaz-Lacava A , et al. VEGF gene haplotypes are associated with sarcoidosis. Chest 2010; 137 (1) 156-163
  • 102 Schürmann M, Reichel P, Müller-Myhsok B, Schlaak M, Müller-Quernheim J, Schwinger E. Results from a genome-wide search for predisposing genes in sarcoidosis. Am J Respir Crit Care Med 2001; 164 (5) 840-846
  • 103 Valentonyte R, Hampe J, Huse K , et al. Sarcoidosis is associated with a truncating splice site mutation in BTNL2. Nat Genet 2005; 37 (4) 357-364
  • 104 Nguyen T, Liu XK, Zhang Y, Dong C. BTNL2, a butyrophilin-like molecule that functions to inhibit T cell activation. J Immunol 2006; 176 (12) 7354-7360
  • 105 Rybicki BA, Walewski JL, Maliarik MJ, Kian H, Iannuzzi MC ; ACCESS Research Group. The BTNL2 gene and sarcoidosis susceptibility in African Americans and Whites. Am J Hum Genet 2005; 77 (3) 491-499
  • 106 Li Y, Wollnik B, Pabst S , et al. BTNL2 gene variant and sarcoidosis. Thorax 2006; 61 (3) 273-274
  • 107 Cozier Y, Ruiz-Narvaez E, McKinnon C, Berman J, Rosenberg L, Palmer J. Replication of genetic loci for sarcoidosis in US black women: data from the Black Women's Health Study. Hum Genet 2013; 132 (7) 803-810
  • 108 Morais A, Lima B, Peixoto MJ, Alves H, Marques A, Delgado L. BTNL2 gene polymorphism associations with susceptibility and phenotype expression in sarcoidosis. Respir Med 2012; 106 (12) 1771-1777
  • 109 Adrianto I, Lin CP, Hale JJ , et al. Genome-wide association study of African and European Americans implicates multiple shared and ethnic specific loci in sarcoidosis susceptibility. PLoS ONE 2012; 7 (8) e43907
  • 110 Milman N, Svendsen CB, Nielsen FC, van Overeem Hansen T. The BTNL2 A allele variant is frequent in Danish patients with sarcoidosis. Clin Respir J 2011; 5 (2) 105-111
  • 111 Wijnen PA, Voorter CE, Nelemans PJ, Verschakelen JA, Bekers O, Drent M. Butyrophilin-like 2 in pulmonary sarcoidosis: a factor for susceptibility and progression?. Hum Immunol 2011; 72 (4) 342-347
  • 112 Wennerström A, Pietinalho A, Lasota J , et al. Major histocompatibility complex class II and BTNL2 associations in sarcoidosis. Eur Respir J 2013; 42 (2) 550-553
  • 113 Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447 (7145) 661-678
  • 114 Hofmann S, Franke A, Fischer A , et al. Genome-wide association study identifies ANXA11 as a new susceptibility locus for sarcoidosis. Nat Genet 2008; 40 (9) 1103-1106
  • 115 Li Y, Pabst S, Kubisch C, Grohé C, Wollnik B. First independent replication study confirms the strong genetic association of ANXA11 with sarcoidosis. Thorax 2010; 65 (10) 939-940
  • 116 Mrazek F, Stahelova A, Kriegova E , et al. Functional variant ANXA11 R230C: true marker of protection and candidate disease modifier in sarcoidosis. Genes Immun 2011; 12 (6) 490-494
  • 117 Levin AM, Iannuzzi MC, Montgomery CG , et al. Association of ANXA11 genetic variation with sarcoidosis in African Americans and European Americans. Genes Immun 2013; 14 (1) 13-18
  • 118 Moss SE, Morgan RO. The annexins. Genome Biol 2004; 5 (4) 219
  • 119 Jorgensen CS, Levantino G, Houen G , et al. Determination of autoantibodies to annexin XI in systemic autoimmune diseases. Lupus 2000; 9 (7) 515-520
  • 120 Hofmann S, Fischer A, Till A , et al; GenPhenReSa Consortium. A genome-wide association study reveals evidence of association with sarcoidosis at 6p12.1. Eur Respir J 2011; 38 (5) 1127-1135
  • 121 Smith AC, Heo WD, Braun V , et al. A network of Rab GTPases controls phagosome maturation and is modulated by Salmonella enterica serovar Typhimurium. J Cell Biol 2007; 176 (3) 263-268
  • 122 Franke A, Fischer A, Nothnagel M , et al. Genome-wide association analysis in sarcoidosis and Crohn's disease unravels a common susceptibility locus on 10p12.2. Gastroenterology 2008; 135 (4) 1207-1215
  • 123 Cozier YC, Ruiz-Narvaez EA, McKinnon CJ, Berman JS, Rosenberg L, Palmer JR. Fine-mapping in African-American women confirms the importance of the 10p12 locus to sarcoidosis. Genes Immun 2012; 13 (7) 573-578
  • 124 Hofmann S, Fischer A, Nothnagel M , et al. A genome-wide association analysis reveals chromosome 12q13.3-q14.1 as a new risk locus for sarcoidosis. Eur Respir J 2013; 41 (4) 888-900
  • 125 Alcock F, Swanton E. Mammalian OS-9 is upregulated in response to endoplasmic reticulum stress and facilitates ubiquitination of misfolded glycoproteins. J Mol Biol 2009; 385 (4) 1032-1042
  • 126 Wei J, Rahman S, Ayaub EA, Dickhout JG, Ask K. Protein misfolding and endoplasmic reticulum stress in chronic lung disease. Chest 2013; 143 (4) 1098-1105
  • 127 Fischer A, Schmid B, Ellinghaus D , et al. A novel sarcoidosis risk locus for Europeans on chromosome 11q13.1. Am J Respir Crit Care Med 2012; 186 (9) 877-885
  • 128 Franke A, McGovern DP, Barrett JC , et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet 2010; 42 (12) 1118-1125
  • 129 Mells GF, Floyd JAB, Morley KI , et al; UK PBC Consortium; Wellcome Trust Case Control Consortium 3. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet 2011; 43 (4) 329-332
  • 130 Ellinghaus D, Ellinghaus E, Nair RP , et al. Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am J Hum Genet 2012; 90 (4) 636-647
  • 131 Knoops B, Goemaere J, Van der Eecken V, Declercq JP. Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid Redox Signal 2011; 15 (3) 817-829
  • 132 Rybicki BA, Levin AM, McKeigue P , et al. A genome-wide admixture scan for ancestry-linked genes predisposing to sarcoidosis in African-Americans. Genes Immun 2011; 12 (2) 67-77
  • 133 Barcellos LF, May SL, Ramsay PP , et al. High-density SNP screening of the major histocompatibility complex in systemic lupus erythematosus demonstrates strong evidence for independent susceptibility regions. PLoS Genet 2009; 5 (10) e1000696
  • 134 Gorlova O, Martin J-E, Rueda B , et al; Spanish Scleroderma Group. Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet 2011; 7 (7) e1002178
  • 135 Spagnolo P, Sato H, Grutters JC , et al. Analysis of BTNL2 genetic polymorphisms in British and Dutch patients with sarcoidosis. Tissue Antigens 2007; 70 (3) 219-227
  • 136 Mochida A, Kinouchi Y, Negoro K , et al. Butyrophilin-like 2 gene is associated with ulcerative colitis in the Japanese under strong linkage disequilibrium with HLA-DRB1*1502. Tissue Antigens 2007; 70 (2) 128-135
  • 137 Pathan S, Gowdy RE, Cooney R , et al. Confirmation of the novel association at the BTNL2 locus with ulcerative colitis. Tissue Antigens 2009; 74 (4) 322-329
  • 138 Franke A, Balschun T, Karlsen TH , et al; IBSEN study group. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet 2008; 40 (11) 1319-1323
  • 139 Silverberg MS, Cho JH, Rioux JD , et al. Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nat Genet 2009; 41 (2) 216-220
  • 140 Mitsunaga S, Hosomichi K, Okudaira Y , et al. Exome sequencing identifies novel rheumatoid arthritis-susceptible variants in the BTNL2. J Hum Genet 2013; 58 (4) 210-215
  • 141 Lian Y, Yue J, Han M, Liu J, Liu L. Analysis of the association between BTNL2 polymorphism and tuberculosis in Chinese Han population. Infect Genet Evol 2010; 10 (4) 517-521
  • 142 Johnson CM, Traherne JA, Jamieson SE , et al. Analysis of the BTNL2 truncating splice site mutation in tuberculosis, leprosy and Crohn's disease. Tissue Antigens 2007; 69 (3) 236-241
  • 143 Duerr RH, Taylor KD, Brant SR , et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314 (5804) 1461-1463
  • 144 Nair RP, Ruether A, Stuart PE , et al. Polymorphisms of the IL12B and IL23R genes are associated with psoriasis. J Invest Dermatol 2008; 128 (7) 1653-1661
  • 145 Ben-Selma W, Boukadida J. IL23R(Arg381Gln) functional polymorphism is associated with active pulmonary tuberculosis severity. Clin Vaccine Immunol 2012; 19 (8) 1188-1192
  • 146 Zhai Y, Xu K, Huang F , et al. Association of interleukin 23 receptor gene polymorphisms (rs10489629, rs7517847) with rheumatoid arthritis in European population: a meta-analysis. Mol Biol Rep 2012; 39 (9) 8987-8994
  • 147 Mizuki N, Meguro A, Ota M , et al. Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behçet's disease susceptibility loci. Nat Genet 2010; 42 (8) 703-706
  • 148 Remmers EF, Cosan F, Kirino Y , et al. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behçet's disease. Nat Genet 2010; 42 (8) 698-702
  • 149 Zhang F, Liu H, Chen S , et al. Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy. Nat Genet 2011; 43 (12) 1247-1251
  • 150 Petukhova L, Duvic M, Hordinsky M , et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 2010; 466 (7302) 113-117
  • 151 Morris DL, Taylor KE, Fernando MM , et al; International MHC and Autoimmunity Genetics Network; Systemic Lupus Erythematosus Genetics Consortium. Unraveling multiple MHC gene associations with systemic lupus erythematosus: model choice indicates a role for HLA alleles and non-HLA genes in Europeans. Am J Hum Genet 2012; 91 (5) 778-793
  • 152 Huang J, Yoshimura S, Isobe N , et al; South Japan Multiple Sclerosis Genetics Consortium. A NOTCH4 missense mutation confers resistance to multiple sclerosis in Japanese. Mult Scler 2013; 19 (13) 1696-1703
  • 153 Li X, Hawkins GA, Ampleford EJ , et al. Genome-wide association study identifies TH1 pathway genes associated with lung function in asthmatic patients. J Allergy Clin Immunol 2013; 132 (2) 313-320 , e15
  • 154 Jensen LJ, Kuhn M, Stark M , et al. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 2009; 37 (Database issue) D412-D416