Exp Clin Endocrinol Diabetes 2014; 122(09): 533-539
DOI: 10.1055/s-0034-1376968
Article
© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Effects of Quercetin on Oxidative Stress Biomarkers in Methimazole – Induced Hypothyroid Rats

A. Santi
1   Departamento de Química, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
,
J. Baldissareli
1   Departamento de Química, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
,
C. R. Murussi
1   Departamento de Química, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
,
G. R. M. Dias
1   Departamento de Química, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
,
C. C. de Menezes
1   Departamento de Química, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
,
D. Zanini
1   Departamento de Química, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
,
F. H. Abdalla
1   Departamento de Química, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
,
G. R. Thomé
1   Departamento de Química, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
,
C. C. Martins
1   Departamento de Química, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
,
M. R. C. Schetinger
1   Departamento de Química, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
,
V. L. Loro
1   Departamento de Química, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
› Author Affiliations
Further Information

Publication History

received 02 December 2013
first decision 08 April 2014

accepted 06 May 2014

Publication Date:
11 June 2014 (online)

Abstract

The objective of the present study was to evaluate the effect of quercetin on oxidative stress biomarkers in methimazole (MMI) – induced hypothyroidism male rats. Hypothyroidism was induced by administering MMI at 20 mg/100 ml in the drinking water, for 1 month. After achieved hypothyroidism, rats received orally 10 or 25 mg/kg of quercetin (QT) for 8 weeks. 60 male wistar rats were randomly divided into 6 groups (group I, control; group II, QT10; group III, QT25; group IV, hypothyroid; group V, hypothyroid+QT10; group VI, hypothyroid+QT25). Liver, kidney and serum TBARS levels significantly increased in hypothyroid rats when compared to controls, along with increased protein carbonyl (PCO) in liver and increased ROS levels in liver and kidney tissues. QT10 and QT25 were effective in decreasing TBARS levels in serum and kidney, PCO levels in liver and ROS generation in liver and kidney. MMI – induced hypothyroidism also increased TBARS levels in cerebral cortex and hippocampus that in turn were decreased in rats treated with QT25. Moreover, the administration of QT25 to hypothyroid rats resulted in decreased SOD activities in liver and whole blood and increased liver CAT activity. Liver and kidney ascorbic acid levels were restored with quercetin supplementation at both concentrations. QT10 and QT25 also significantly increased total oxidative scavenging capacity in liver and kidney tissues from hypothyroid rats. These findings suggest that MMI – induced hypothyroidism increases oxidative stress parameters and quercetin administration could exert beneficial effects against redox imbalance in hypothyroid status.

 
  • References

  • 1 Mishra P, Samanta L. Oxidative stress and heart failure in altered thyroid States. Scientific World Journal 2012; 2012: 741861
  • 2 Weitzel JM, Iwen KA, Seitz HJ. Regulation of mitochondrial biogenesis by thyroid hormone. Exp Physiol 2003; 88: 121-128
  • 3 Dirican M, Taş S, Sarandöl E. High-dose taurine supplementation increases serum paraoxonase and arylesterase activities in experimental hypothyroidism. Clin Exp Pharmacol Physiol 2007; 34: 833-837
  • 4 Bhanja S, Chainy GB. PTU-induced hypothyroidism modulates antioxidant defence status in the developing cerebellum. Int J Dev Neurosci 2010; 28: 251-262
  • 5 Reddy VS, Gouroju S, Suchitra MM et al. Antioxidant defense in overt and subclinical hypothyroidism. Horm Metab Res 2013; 45: 754-758
  • 6 Santi A, Duarte MM, Moresco RN et al. Association between thyroid hormones, lipids and oxidative stress biomarkers in overt hypothyroidism. Clin Chem Lab Med 2010; 48: 1635-1639
  • 7 Santi A, Duarte MM, de Menezes CC et al. Association of lipids with oxidative stress biomarkers in subclinical hypothyroidism. Int J Endocrinol 2012; 2012: 856359
  • 8 Nanda N, Bobby Z, Hamide A. Association of thyroid stimulating hormone and coronary lipid risk factors with lipid peroxidation in hypothyroidism. Clin Chem Lab Med 2008; 46: 674-679
  • 9 Parthasarathy S, Santanam N, Ramachandran S et al. Potential role of oxidized lipids and lipoproteins in antioxidant defense. Free Radic Res 2000; 33: 197-215
  • 10 Scott MD, Lubin BH, Zuo L et al. Erythrocyte defense against hydrogen peroxide, preeminent importance of catalase. J Lab Clin Med 1991; 118: 7-16
  • 11 Nordberg J, Arnér ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 2001; 31: 1287-1312
  • 12 Jadeja RN, Thounaojam MC, Dandekar DS et al. Clerodendron glandulosum. Coleb extract ameliorates high fat diet/fatty acid induced lipotoxicity in experimental models of non-alcoholic steatohepatitis. Food Chem Toxicol 2010; 48: 3424-3431
  • 13 Hertog MG, Bueno-de-Mesquita HB, Fehily AM et al. Fruit and vegetable consumption and cancer mortality in the Caerphilly Study. Cancer Epidemiol Biomarkers Prev 1996; 5: 673-677
  • 14 Morand C, Crespy V, Manach C et al. Plasma metabolites of quercetin and their antioxidant properties. Am J Physiol 1998; 275: 212-219
  • 15 Mahmoud MF, Hassan NA, El Bassossy HM et al. Quercetin protects against diabetes-induced exaggerated vasoconstriction in rats: effect on low grade inflammation. PLoS One 2013; 8: 63784
  • 16 Ajay M, Achike FI, Mustafa AM et al. Effect of quercetin on altered vascular reactivity in aortas isolated from streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 2006; 73: 1-7
  • 17 Tieppo J, Vercelino R, Dias AS et al. Evaluation of the protective effects of quercetin in the hepatopulmonary syndrome. Food Chem Toxicol 2007; 45: 1140-1146
  • 18 Mi Y, Tu L, Wang H et al. Supplementation with quercetin attenuates 4-nitrophenol-induced testicular toxicity in adult male mice. Anat Rec (Hoboken) 2013; 296: 1650-1657
  • 19 Dias GR, Vieira FA, Dobrachinski F et al. Diphenyl diselenide diet intake improves spatial learning and memory deficits in hypothyroid female rats. Int J Dev Neurosci 2012; 30: 83-89
  • 20 Viarengo A, Burlando B, Cavaletto M et al. Role of metallothionein against oxidative stress in the mussel Mytilus galloprovincialis. Am J Physiol 1999; 277: 1612-1619
  • 21 Amado LL, Garcia ML, Ramos PB et al. A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: Application to evaluate microcystins toxicity. Sci Total Environ 2009; 407: 2115-2123
  • 22 Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 351-358
  • 23 Jentzsch AM, Bachmann H, Fürst P et al. Improved analysis of malondialdehyde in human body fluids. Free Radic Biol Med 1996; 20: 251-256
  • 24 Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 1994; 233: 357-363
  • 25 Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 1972; 247: 3170-3175
  • 26 Nelson DP, Kiesow LA. Enthalpy of decomposition of hydrogen peroxide by catalase at 25 degrees C (with molar extinction coefficients of H 2 O 2 solutions in the UV). Anal Biochem 1972; 49: 474-478
  • 27 Roe JH. Methods of biochemical analysis. In: Glick D. (ed.) Interscience Publishers; New York: 1954: 115-139
  • 28 Ellman GL. Tissue sulphydryl groups. Arch Biochem Biophys 1959; 82: 70-77
  • 29 Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254
  • 30 Gerenova J, Gadjeva V. Oxidative stress and antioxidant enzyme activities in patients with Hashimoto’s thyroiditis. Comp Clin Pathol 2007; 16: 259-264
  • 31 Jena S, Chainy GB, Dandapat J. Expression of antioxidant genes in renal cortex of PTU-induced hypothyroid rats: effect of vitamin E and curcumin. Mol Biol Rep 2012; 39: 1193-1203
  • 32 Hardwood M, Danielewska-Nikiel B, Borzelleca JF et al. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic propierties. Food Chem Toxicol 2007; 45: 2179-2205
  • 33 Guerrero A, Pamplona R, Portero-Otin M et al. Effect of thyroid status on lipid composition and peroxidation in the mouse liver. Free Rad Biol Med 1999; 26: 73-80
  • 34 Gad MZ, Khattab M. Modulation of nitric oxide synthesis in inflammation: relationship to oxygenderived free radicals and prostaglandin synthesis. Arzneimittelforschung 2000; 50: 449-455
  • 35 Dirican M, Taş S, Sarandöl E. High-dose taurine supplementation increases serum paraoxonase and arylesterase activities in experimental hypothyroidism. Clin Exp Pharmacol Physiol 2007; 34: 833-837
  • 36 Duarte J, Galisteo M, Ocete MA et al. Effects of chronic quercetin treatment on hepatic oxidative status of spontaneously hypertensive rats. Mol Cell Biochem 2001; 221: 155-160
  • 37 Bernal J. Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab 2007; 3: 249-259
  • 38 Naziroglu M. New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 2007; 32: 1990-2001
  • 39 Cano-Europa E, Pérez-Severiano F, Vergara P et al. Hypothyroidism induces selective oxidative stress in amygdala and hippocampus of rat. Metab Brain Dis 2008; 23: 275-287
  • 40 Jena S, Anand C, Chainy GB et al. Induction of oxidative stress and inhibition of superoxide dismutase expression in rat cerebral cortex and cerebellum by PTU-induced hypothyroidism and its reversal by curcumin. Neurol Sci 2012; 33: 869-873
  • 41 Cho JY, Kim IS, Jang YH et al. Protective effect of quercetin, a natural flavonoid against neuronal damage after transient global cerebral ischemia. Neurosci Lett 2006; 404: 330-335
  • 42 Costa LG, Tait L, de Laat R et al. Modulation of Paraoxonase 2 (PON2) in Mouse Brain by the Polyphenol Quercetin: A Mechanism of Neuroprotection?. Neurochem Res 2013; 38: 1809-1818
  • 43 Grimsrud PA, Xie H, Griffin TJ et al. Oxidative stress and covalent modification of protein with bioactive aldehydes. J Biol Chem 2008; 283: 21837-21841
  • 44 Venditti P, Di Meo S. Thyroid hormone-induced oxidative stress. Cell Mol Life Sci 2006; 63: 414-434
  • 45 Monsen ER. Dietary reference intakes for the antioxidant nutrients: vitamin C, vitamin E, selenium, and carotenoids. J Am Diet Assoc 2000; 100: 637-640
  • 46 Konukoglu D, Ercan M, Hatemi H. Plasma viscosity in female patients with hypothyroidism: effects of oxidative stress and cholesterol. Clin Hemorheol Microcirc 2002; 27: 107-113
  • 47 Sarandöl E, Taş S, Dirican M et al. Oxidative stress and serum paraoxonase activity in experimental hypothyroidism: effect of vitamin E supplementation. Cell Biochem Funct 2005; 23: 1-8
  • 48 Padayatty SJ, Katz A, Wang Y et al. Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 2003; 22: 18-35
  • 49 Maddaiah VT. Glutathione correlates with lipid peroxidation in liver mitochondria of triiodothyronine-injected hypophysectomized rats. FASEB J 1990; 4: 1513-1518