Semin Neurol 2014; 34(02): 217-224
DOI: 10.1055/s-0034-1381738
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Neurogenetics of Atypical Parkinsonian Disorders

Brent L. Fogel
1   Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
,
Mary C. Clark
1   Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
,
Daniel H. Geschwind
1   Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
2   Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
3   Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
› Author Affiliations
Further Information

Publication History

Publication Date:
25 June 2014 (online)

Abstract

Although classic Parkinson disease is the disorder most commonly associated with the clinical feature of parkinsonism, there is in fact a broader spectrum of disease represented by a collection of phenotypically similar neurodegenerative conditions that mimic many of its core features. These atypical parkinsonian disorders most commonly include progressive supranuclear palsy and corticobasal degeneration, disorders both associated with frontotemporal dementia, as well as multiple system atrophy and dementia with Lewy bodies. Although the clinical distinction of these disorders still remains a challenge to physicians, recent advances in genetics are poised to tease apart the differences. Insights into the molecular etiologies underlying these conditions will improve diagnosis, yield a better understanding of the underlying disease pathology, and ultimately lend stimulation to the development of potential treatments. At the same time, the wide range of phenotypes observed from mutations in a single gene warrants broad testing facilitated by advances in DNA sequencing. These expanding genomic approaches, ranging from the use of next-generation sequencing to identify causative or risk-associated gene variations to the study of epigenetic modification linking human genetics to environmental factors, are poised to lead the field into a new age of discovery.

 
  • References

  • 1 Stamelou M, Hoeglinger GU. Atypical parkinsonism: an update. Curr Opin Neurol 2013; 26 (4) 401-405
  • 2 Wenning GK, Krismer F, Poewe W. New insights into atypical parkinsonism. Curr Opin Neurol 2011; 24 (4) 331-338
  • 3 Coppola G, Geschwind DH. Genomic medicine enters the neurology clinic. Neurology 2012; 79 (2) 112-114
  • 4 Lubarsky M, Juncos JL. Progressive supranuclear palsy: a current review. Neurologist 2008; 14 (2) 79-88
  • 5 Armstrong RA, Cairns NJ. Spatial patterns of the tau pathology in progressive supranuclear palsy. Neurol Sci 2013; 34 (3) 337-344
  • 6 Schrag A, Ben-Shlomo Y, Quinn NP. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet 1999; 354 (9192) 1771-1775
  • 7 Baker M, Litvan I, Houlden H , et al. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet 1999; 8 (4) 711-715
  • 8 Conrad C, Andreadis A, Trojanowski JQ , et al. Genetic evidence for the involvement of tau in progressive supranuclear palsy. Ann Neurol 1997; 41 (2) 277-281
  • 9 Wade-Martins R. Genetics: The MAPT locus-a genetic paradigm in disease susceptibility. Nat Rev Neurol 2012; 8 (9) 477-478
  • 10 Höglinger GU, Melhem NM, Dickson DW , et al; PSP Genetics Study Group. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet 2011; 43 (7) 699-705
  • 11 Majounie E, Cross W, Newsway V , et al. Variation in tau isoform expression in different brain regions and disease states. Neurobiol Aging 2013; 34 (7) e7-e12
  • 12 Ezquerra M, Gaig C, Ascaso C, Muñoz E, Tolosa E. Tau and saitohin gene expression pattern in progressive supranuclear palsy. Brain Res 2007; 1145: 168-176
  • 13 Takanashi M, Mori H, Arima K, Mizuno Y, Hattori N. Expression patterns of tau mRNA isoforms correlate with susceptible lesions in progressive supranuclear palsy and corticobasal degeneration. Brain Res Mol Brain Res 2002; 104 (2) 210-219
  • 14 Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 1989; 3 (4) 519-526
  • 15 Litvan I, Baker M, Hutton M. Tau genotype: no effect on onset, symptom severity, or survival in progressive supranuclear palsy. Neurology 2001; 57 (1) 138-140
  • 16 Li Y, Chen JA, Sears RL , et al. An epigenetic signature in peripheral blood associated with the haplotype on 17q21.31, a risk factor for neurodegenerative tauopathy. PLoS Genet 2014; 10 (3) e1004211
  • 17 Ferrari R, Ryten M, Simone R , et al; UK Brain Expression Consortium. Assessment of common variability and expression quantitative trait loci for genome-wide associations for progressive supranuclear palsy. Neurobiol Aging 2014; 35 (6) e1-e12
  • 18 Rohan Z, Matej R. Current concepts in the classification and diagnosis of frontotemporal lobar degenerations: a practical approach. Arch Pathol Lab Med 2014; 138 (1) 132-138
  • 19 Chow TW, Miller BL, Hayashi VN, Geschwind DH. Inheritance of frontotemporal dementia. Arch Neurol 1999; 56 (7) 817-822
  • 20 Hutton M, Lendon CL, Rizzu P , et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998; 393 (6686) 702-705
  • 21 Khan BK, Yokoyama JS, Takada LT , et al. Atypical, slowly progressive behavioural variant frontotemporal dementia associated with C9ORF72 hexanucleotide expansion. J Neurol Neurosurg Psychiatry 2012; 83 (4) 358-364
  • 22 Farlow JL, Foroud T. The genetics of dementia. Semin Neurol 2013; 33 (4) 417-422
  • 23 Cohn-Hokke PE, Elting MW, Pijnenburg YA, van Swieten JC. Genetics of dementia: update and guidelines for the clinician. Am J Med Genet B Neuropsychiatr Genet 2012; 159B (6) 628-643
  • 24 Achi EY, Rudnicki SA. ALS and frontotemporal dysfunction: a review. Neurol Res Int 2012; 2012: 806306
  • 25 DeJesus-Hernandez M, Mackenzie IR, Boeve BF , et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011; 72 (2) 245-256
  • 26 Renton AE, Majounie E, Waite A , et al; ITALSGEN Consortium. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011; 72 (2) 257-268
  • 27 Majounie E, Renton AE, Mok K , et al; Chromosome 9-ALS/FTD Consortium; French research network on FTLD/FTLD/ALS; ITALSGEN Consortium. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 2012; 11 (4) 323-330
  • 28 Harms MB, Baloh RH. Clinical neurogenetics: amyotrophic lateral sclerosis. Neurol Clin 2013; 31 (4) 929-950
  • 29 Donnelly CJ, Zhang PW, Pham JT , et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 2013; 80 (2) 415-428
  • 30 Todd PK, Paulson HL. C9orf72-associated FTD/ALS: when less is more. Neuron 2013; 80 (2) 257-258
  • 31 Mathew R, Bak TH, Hodges JR. Diagnostic criteria for corticobasal syndrome: a comparative study. J Neurol Neurosurg Psychiatry 2012; 83 (4) 405-410
  • 32 Stamelou M, Alonso-Canovas A, Bhatia KP. Dystonia in corticobasal degeneration: a review of the literature on 404 pathologically proven cases. Mov Disord 2012; 27 (6) 696-702
  • 33 Wadia PM, Lang AE. The many faces of corticobasal degeneration. Parkinsonism Relat Disord 2007; 13 (Suppl. 03) S336-S340
  • 34 Seritan AL, Mendez MF, Silverman DH, Hurley RA, Taber KH. Functional imaging as a window to dementia: corticobasal degeneration. J Neuropsychiatry Clin Neurosci 2004; 16 (4) 393-399
  • 35 Belfor N, Amici S, Boxer AL , et al. Clinical and neuropsychological features of corticobasal degeneration. Mech Ageing Dev 2006; 127 (2) 203-207
  • 36 Litvan I, Chism A, Litvan J, Cambon A, Hutton M. H1/H1 genotype influences symptom severity in corticobasal syndrome. Mov Disord 2010; 25 (6) 760-763
  • 37 Di Maria E, Tabaton M, Vigo T , et al. Corticobasal degeneration shares a common genetic background with progressive supranuclear palsy. Ann Neurol 2000; 47 (3) 374-377
  • 38 Kouri N, Oshima K, Takahashi M , et al. Corticobasal degeneration with olivopontocerebellar atrophy and TDP-43 pathology: an unusual clinicopathologic variant of CBD. Acta Neuropathol 2013; 125 (5) 741-752
  • 39 Le Ber I, Camuzat A, Guillot-Noel L , et al. C9ORF72 repeat expansions in the frontotemporal dementias spectrum of diseases: a flow-chart for genetic testing. J Alzheimers Dis 2013; 34 (2) 485-499
  • 40 Kouri N, Carlomagno Y, Baker M , et al. Novel mutation in MAPT exon 13 (p.N410H) causes corticobasal degeneration. Acta Neuropathol 2014; 127 (2) 271-282
  • 41 Sha S, Hou C, Viskontas IV, Miller BL. Are frontotemporal lobar degeneration, progressive supranuclear palsy and corticobasal degeneration distinct diseases?. Nat Clin Pract Neurol 2006; 2 (12) 658-665
  • 42 Fogel BL, Pribadi M, Pi S, Perlman SL, Geschwind DH, Coppola G. C9ORF72 expansion is not a significant cause of sporadic spinocerebellar ataxia. Mov Disord 2012; 27 (14) 1832-1833
  • 43 Clark LN, Poorkaj P, Wszolek Z , et al. Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc Natl Acad Sci U S A 1998; 95 (22) 13103-13107
  • 44 Coppola G, Chinnathambi S, Lee JJ , et al; Alzheimer's Disease Genetics Consortium. Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases. Hum Mol Genet 2012; 21 (15) 3500-3512
  • 45 Cannas A, Borghero G, Floris GL , et al. The p.A382T TARDBP gene mutation in Sardinian patients affected by Parkinson's disease and other degenerative parkinsonisms. Neurogenetics 2013; 14 (2) 161-166
  • 46 Kertesz A, Finger E, Murrell J , et al. Progressive supranuclear palsy in a family with TDP-43 pathology. Neurocase 2014;
  • 47 Rayaprolu S, Mullen B, Baker M , et al. TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson's disease. Mol Neurodegener 2013; 8: 19
  • 48 Ahmed Z, Asi YT, Sailer A , et al. The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathol Appl Neurobiol 2012; 38 (1) 4-24
  • 49 Roncevic D, Palma JA, Martinez J , et al. Cerebellar and parkinsonian phenotypes in multiple system atrophy: similarities, differences and survival. J Neural Transm 2014; 121 (5) 507-512
  • 50 Simón-Sánchez J, Schulte C, Bras JM , et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet 2009; 41 (12) 1308-1312
  • 51 Scholz SW, Houlden H, Schulte C , et al. SNCA variants are associated with increased risk for multiple system atrophy. Ann Neurol 2009; 65 (5) 610-614
  • 52 Ross OA, Vilariño-Güell C, Wszolek ZK, Farrer MJ, Dickson DW. Reply to: SNCA variants are associated with increased risk of multiple system atrophy. Ann Neurol 2010; 67 (3) 414-415
  • 53 Al-Chalabi A, Dürr A, Wood NW , et al; NNIPPS Genetic Study Group. Genetic variants of the alpha-synuclein gene SNCA are associated with multiple system atrophy. PLoS ONE 2009; 4 (9) e7114
  • 54 Multiple-System Atrophy Research Collaboration. Mutations in COQ2 in familial and sporadic multiple-system atrophy. N Engl J Med 2013; 369 (3) 233-244
  • 55 Bleasel JM, Wong JH, Halliday GM, Kim WS. Lipid dysfunction and pathogenesis of multiple system atrophy. Acta Neuropathol Commun 2014; 2 (1) 15
  • 56 Sasaki H, Emi M, Iijima H , et al. Copy number loss of (src homology 2 domain containing)-transforming protein 2 (SHC2) gene: discordant loss in monozygotic twins and frequent loss in patients with multiple system atrophy. Mol Brain 2011; 4: 24
  • 57 Ferguson MC, Garland EM, Hedges L , et al. SHC2 gene copy number in multiple system atrophy (MSA). Clin Auton Res 2014; 24 (1) 25-30
  • 58 Morra LF, Donovick PJ. Clinical presentation and differential diagnosis of dementia with Lewy bodies: a review. Int J Geriatr Psychiatry 2013;
  • 59 Ebersbach G, Moreau C, Gandor F, Defebvre L, Devos D. Clinical syndromes: Parkinsonian gait. Mov Disord 2013; 28 (11) 1552-1559
  • 60 Ikeuchi T, Kakita A, Shiga A , et al. Patients homozygous and heterozygous for SNCA duplication in a family with parkinsonism and dementia. Arch Neurol 2008; 65 (4) 514-519
  • 61 Zarranz JJ, Alegre J, Gómez-Esteban JC , et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004; 55 (2) 164-173
  • 62 Ohtake H, Limprasert P, Fan Y , et al. Beta-synuclein gene alterations in dementia with Lewy bodies. Neurology 2004; 63 (5) 805-811
  • 63 Mata IF, Samii A, Schneer SH , et al. Glucocerebrosidase gene mutations: a risk factor for Lewy body disorders. Arch Neurol 2008; 65 (3) 379-382
  • 64 Sidransky E, Lopez G. The link between the GBA gene and parkinsonism. Lancet Neurol 2012; 11 (11) 986-998
  • 65 Velayati A, Yu WH, Sidransky E. The role of glucocerebrosidase mutations in Parkinson disease and Lewy body disorders. Curr Neurol Neurosci Rep 2010; 10 (3) 190-198
  • 66 Goker-Alpan O, Giasson BI, Eblan MJ , et al. Glucocerebrosidase mutations are an important risk factor for Lewy body disorders. Neurology 2006; 67 (5) 908-910
  • 67 Paulson H. Machado-Joseph disease/spinocerebellar ataxia type 3. Handb Clin Neurol 2012; 103: 437-449
  • 68 Subramony SH, Hernandez D, Adam A , et al. Ethnic differences in the expression of neurodegenerative disease: Machado-Joseph disease in Africans and Caucasians. Mov Disord 2002; 17 (5) 1068-1071
  • 69 Todd PK, Paulson HL. RNA-mediated neurodegeneration in repeat expansion disorders. Ann Neurol 2010; 67 (3) 291-300
  • 70 Shakkottai VG, Fogel BL. Clinical neurogenetics: autosomal dominant spinocerebellar ataxia. Neurol Clin 2013; 31 (4) 987-1007
  • 71 Evers MM, Toonen LJ, van Roon-Mom WM. Ataxin-3 protein and RNA toxicity in spinocerebellar ataxia type 3: current insights and emerging therapeutic strategies. Mol Neurobiol 2013;
  • 72 Jhunjhunwala K, Netravathi M, Purushottam M, Jain S, Pal PK. Profile of extrapyramidal manifestations in 85 patients with spinocerebellar ataxia type 1, 2 and 3. J Clin Neurosci 2013;
  • 73 Fogel BL, Baker C, Curnow A, Perlman SL, Geschwind DH, Coppola G. Mutations in PDYN are not responsible for multiple system atrophy. J Neurol 2013; 260 (3) 927-928
  • 74 Greco CM, Berman RF, Martin RM , et al. Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain 2006; 129 (Pt 1) 243-255
  • 75 Hagerman P. Fragile X-associated tremor/ataxia syndrome (FXTAS): pathology and mechanisms. Acta Neuropathol 2013; 126 (1) 1-19
  • 76 Todd PK, Oh SY, Krans A , et al. CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome. Neuron 2013; 78 (3) 440-455
  • 77 Fogel BL, Geschwind DH. Clinical neurogenetics. In: Daroff R, Fenichel G, Jankovic J, , et al, eds. Neurology in Clinical Practice. 6th ed. Philadelphia, PA: Elsevier; 2012: 704-734
  • 78 Rabbani B, Tekin M, Mahdieh N. The promise of whole-exome sequencing in medical genetics. J Hum Genet 2014; 59 (1) 5-15
  • 79 Wang Z, Liu X, Yang BZ, Gelernter J. The role and challenges of exome sequencing in studies of human diseases. Front Genet 2013; 4: 160
  • 80 Biesecker LG. Exome sequencing makes medical genomics a reality. Nat Genet 2010; 42 (1) 13-14
  • 81 Bamshad MJ, Ng SB, Bigham AW , et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 2011; 12 (11) 745-755