Semin Liver Dis 2014; 34(03): 255-264
DOI: 10.1055/s-0034-1383725
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Genetics and Epigenetics of Primary Biliary Cirrhosis

Ilaria Bianchi
1   Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
,
Marco Carbone
2   Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
3   Academic Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
,
Ana Lleo
1   Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
,
Pietro Invernizzi
1   Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
4   Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, California
› Author Affiliations
Further Information

Publication History

Publication Date:
24 July 2014 (online)

Abstract

Primary biliary cirrhosis (PBC) has been considered a multifactorial autoimmune disease presumably arising from a combination of environmental and genetic factors, with genetic inheritance mostly suggested by familial occurrence and high concordance rate among monozygotic twins. In the last decade, genome-wide association studies, new data on sex chromosome defects and instabilities, and initial evidence on the role of epigenetic abnormalities have strengthened the crucial importance of genetic and epigenetic factors in determining the susceptibility of PBC. High-throughput genetic studies in particular have revolutionized the search for genetic influences on PBC and have the potential to be translated into clinical and therapeutic applications, although more biological knowledge on candidate genes is now needed. In this review, these recent discoveries will be critically summarized with particular focus on the possible steps that may transfer genetic and epigenetic knowledge to direct health benefits in patients with PBC.

 
  • References

  • 1 Invernizzi P, Selmi C, Gershwin ME. Update on primary biliary cirrhosis. Dig Liver Dis 2010; 42 (6) 401-408
  • 2 Lleo A, Invernizzi P. Apotopes and innate immune system: novel players in the primary biliary cirrhosis scenario. Dig Liver Dis 2013; 45 (8) 630-636
  • 3 Podda M, Selmi C, Lleo A, Moroni L, Invernizzi P. The limitations and hidden gems of the epidemiology of primary biliary cirrhosis. J Autoimmun 2013; 46: 81-87
  • 4 Tsuda M, Zhang W, Yang GX , et al. Deletion of interleukin (IL)-12p35 induces liver fibrosis in dominant-negative TGFβ receptor type II mice. Hepatology 2013; 57 (2) 806-816
  • 5 Ando Y, Yang GX, Tsuda M , et al. The immunobiology of colitis and cholangitis in interleukin-23p19 and interleukin-17A deleted dominant negative form of transforming growth factor beta receptor type II mice. Hepatology 2012; 56 (4) 1418-1426
  • 6 European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of cholestatic liver diseases. J Hepatol 2009; 51 (2) 237-267
  • 7 Invernizzi P, Battezzati PM, Crosignani A , et al. Peculiar HLA polymorphisms in Italian patients with primary biliary cirrhosis. J Hepatol 2003; 38 (4) 401-406
  • 8 Invernizzi P, Selmi C, Poli F , et al; Italian PBC Genetic Study Group. Human leukocyte antigen polymorphisms in Italian primary biliary cirrhosis: a multicenter study of 664 patients and 1992 healthy controls. Hepatology 2008; 48 (6) 1906-1912
  • 9 Donaldson PT, Baragiotta A, Heneghan MA , et al. HLA class II alleles, genotypes, haplotypes, and amino acids in primary biliary cirrhosis: a large-scale study. Hepatology 2006; 44 (3) 667-674
  • 10 Invernizzi P. Human leukocyte antigen in primary biliary cirrhosis: an old story now reviving. Hepatology 2011; 54 (2) 714-723
  • 11 Hirschfield GM, Liu X, Xu C , et al. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med 2009; 360 (24) 2544-2555
  • 12 Liu X, Invernizzi P, Lu Y , et al. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat Genet 2010; 42 (8) 658-660
  • 13 Mells GF, Floyd JA, Morley KI , et al; UK PBC Consortium; Wellcome Trust Case Control Consortium 3. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet 2011; 43 (11) 1164
  • 14 Nakamura M, Nishida N, Kawashima M , et al. Genome-wide association study identifies TNFSF15 and POU2AF1 as susceptibility loci for primary biliary cirrhosis in the Japanese population. Am J Hum Genet 2012; 91 (4) 721-728
  • 15 Juran BD, Hirschfield GM, Invernizzi P , et al; Italian PBC Genetics Study Group. Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. Hum Mol Genet 2012; 21 (23) 5209-5221
  • 16 Liu JZ, Almarri MA, Gaffney DJ , et al; UK Primary Biliary Cirrhosis (PBC) Consortium; Wellcome Trust Case Control Consortium 3. Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis. Nat Genet 2012; 44 (10) 1137-1141
  • 17 Kar SP, Seldin MF, Chen W , et al; Italian PBC Genetics Study Group. Pathway-based analysis of primary biliary cirrhosis genome-wide association studies. Genes Immun 2013; 14 (3) 179-186
  • 18 Carbone M, Lleo A, Sandford RN, Invernizzi P. Implications of genome-wide association studies in novel therapeutics in primary biliary cirrhosis. Eur J Immunol 2014; 44 (4) 945-954
  • 19 Bach N, Schaffner F. Familial primary biliary cirrhosis. J Hepatol 1994; 20 (6) 698-701
  • 20 Brind AM, Bray GP, Portmann BC, Williams R. Prevalence and pattern of familial disease in primary biliary cirrhosis. Gut 1995; 36 (4) 615-617
  • 21 Fagan E, Williams R, Cox S. Primary biliary cirrhosis in mother and daughter. BMJ 1977; 2 (6096) 1195
  • 22 Floreani A, Naccarato R, Chiaramonte M. Prevalence of familial disease in primary biliary cirrhosis in Italy. J Hepatol 1997; 26 (3) 737-738
  • 23 Jaup BH, Zettergren LS. Familial occurrence of primary biliary cirrhosis associated with hypergammaglobulinemia in descendants: a family study. Gastroenterology 1980; 78 (3) 549-555
  • 24 Jones DE, Watt FE, Metcalf JV, Bassendine MF, James OF. Familial primary biliary cirrhosis reassessed: a geographically-based population study. J Hepatol 1999; 30 (3) 402-407
  • 25 Lazaridis KN, Juran BD, Boe GM , et al. Increased prevalence of antimitochondrial antibodies in first-degree relatives of patients with primary biliary cirrhosis. Hepatology 2007; 46 (3) 785-792
  • 26 Tsuji K, Watanabe Y, Van De Water J , et al. Familial primary biliary cirrhosis in Hiroshima. J Autoimmun 1999; 13 (1) 171-178
  • 27 Invernizzi P, Selmi C, Mackay IR, Podda M, Gershwin ME. From bases to basis: linking genetics to causation in primary biliary cirrhosis. Clin Gastroenterol Hepatol 2005; 3 (5) 401-410
  • 28 Invernizzi P. Role of X chromosome defects in primary biliary cirrhosis. Hepatol Res 2007; 37 (3) (Suppl. 03) S384-S388
  • 29 Milkiewicz P, Heathcote J. Primary biliary cirrhosis in a patient with Turner syndrome. Can J Gastroenterol 2005; 19 (10) 631-633
  • 30 Invernizzi P, Pasini S, Selmi C, Gershwin ME, Podda M. Female predominance and X chromosome defects in autoimmune diseases. J Autoimmun 2009; 33 (1) 12-16
  • 31 Invernizzi P, Miozzo M, Battezzati PM , et al. Frequency of monosomy X in women with primary biliary cirrhosis. Lancet 2004; 363 (9408) 533-535
  • 32 Invernizzi P, Miozzo M, Selmi C , et al. X chromosome monosomy: a common mechanism for autoimmune diseases. J Immunol 2005; 175 (1) 575-578
  • 33 Invernizzi P, Miozzo M, Oertelt-Prigione S , et al. X monosomy in female systemic lupus erythematosus. Ann N Y Acad Sci 2007; 1110: 84-91
  • 34 Bianchi I, Lleo A, Gershwin ME, Invernizzi P. The X chromosome and immune associated genes. J Autoimmun 2012; 38 (2-3) J187-J192
  • 35 Lleo A, Oertelt-Prigione S, Bianchi I , et al. Y chromosome loss in male patients with primary biliary cirrhosis. J Autoimmun 2013; 41: 87-91
  • 36 Mitchell MM, Lleo A, Zammataro L , et al. Epigenetic investigation of variably X chromosome inactivated genes in monozygotic female twins discordant for primary biliary cirrhosis. Epigenetics 2011; 6 (1) 95-102
  • 37 Lleo A, Liao J, Invernizzi P , et al. Immunoglobulin M levels inversely correlate with CD40 ligand promoter methylation in patients with primary biliary cirrhosis. Hepatology 2012; 55 (1) 153-160
  • 38 Hewagama A, Richardson B. The genetics and epigenetics of autoimmune diseases. J Autoimmun 2009; 33 (1) 3-11
  • 39 Duerr RH, Taylor KD, Brant SR , et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314 (5804) 1461-1463
  • 40 Sladek R, Rocheleau G, Rung J , et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007; 445 (7130) 881-885
  • 41 Collins FS, Guyer MS, Charkravarti A. Variations on a theme: cataloging human DNA sequence variation. Science 1997; 278 (5343) 1580-1581
  • 42 Hindorff LA, Sethupathy P, Junkins HA , et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 2009; 106 (23) 9362-9367
  • 43 McKay FC, Hoe E, Parnell G , et al. IL7Rα expression and upregulation by IFNβ in dendritic cell subsets is haplotype-dependent. PLoS ONE 2013; 8 (10) e77508
  • 44 Ouyang W, Oh SA, Ma Q, Bivona MR, Zhu J, Li MO. TGF-β cytokine signaling promotes CD8+ T cell development and low-affinity CD4+ T cell homeostasis by regulation of interleukin-7 receptor α expression. Immunity 2013; 39 (2) 335-346
  • 45 Tsuda M, Moritoki Y, Lian ZX , et al. Biochemical and immunologic effects of rituximab in patients with primary biliary cirrhosis and an incomplete response to ursodeoxycholic acid. Hepatology 2012; 55 (2) 512-521
  • 46 Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002; 2 (10) 725-734
  • 47 Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol 2005; 23: 515-548
  • 48 Scalapino KJ, Daikh DI. CTLA-4: a key regulatory point in the control of autoimmune disease. Immunol Rev 2008; 223: 143-155
  • 49 Dhirapong A, Yang GX, Nadler S , et al. Therapeutic effect of cytotoxic T lymphocyte antigen 4/immunoglobulin on a murine model of primary biliary cirrhosis. Hepatology 2013; 57 (2) 708-715
  • 50 Genovese MC, Becker JC, Schiff M , et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med 2005; 353 (11) 1114-1123
  • 51 Kremer JM, Dougados M, Emery P , et al. Treatment of rheumatoid arthritis with the selective costimulation modulator abatacept: twelve-month results of a phase iib, double-blind, randomized, placebo-controlled trial. Arthritis Rheum 2005; 52 (8) 2263-2271
  • 52 Abrams JR, Lebwohl MG, Guzzo CA , et al. CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J Clin Invest 1999; 103 (9) 1243-1252
  • 53 Zhernakova A, van Diemen CC, Wijmenga C. Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat Rev Genet 2009; 10 (1) 43-55
  • 54 Kita H, Matsumura S, He XS , et al. Quantitative and functional analysis of PDC-E2-specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. J Clin Invest 2002; 109 (9) 1231-1240
  • 55 Becher B, Durell BG, Noelle RJ. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Invest 2002; 110 (4) 493-497
  • 56 Lleo A, Gershwin ME, Mantovani A, Invernizzi P. Towards common denominators in primary biliary cirrhosis: the role of IL-12. J Hepatol 2012; 56 (3) 731-733
  • 57 Yoshida K, Yang GX, Zhang W , et al. Deletion of interleukin-12p40 suppresses autoimmune cholangitis in dominant negative transforming growth factor beta receptor type II mice. Hepatology 2009; 50 (5) 1494-1500
  • 58 Mannon PJ, Fuss IJ, Mayer L , et al; Anti-IL-12 Crohn's Disease Study Group. Anti-interleukin-12 antibody for active Crohn's disease. N Engl J Med 2005; 352 (12) 1276
  • 59 Burakoff R, Barish CF, Riff D , et al. A phase 1/2A trial of STA 5326, an oral interleukin-12/23 inhibitor, in patients with active moderate to severe Crohn's disease. Inflamm Bowel Dis 2006; 12 (7) 558-565
  • 60 Leonardi CL, Kimball AB, Papp KA , et al; PHOENIX 1 study investigators. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 2008; 371 (9625) 1665-1674
  • 61 Hochdörfer T, Kuhny M, Zorn CN , et al. Activation of the PI3K pathway increases TLR-induced TNF-α and IL-6 but reduces IL-1β production in mast cells. Cell Signal 2011; 23 (5) 866-875
  • 62 Frey RS, Gao X, Javaid K, Siddiqui SS, Rahman A, Malik AB. Phosphatidylinositol 3-kinase gamma signaling through protein kinase Czeta induces NADPH oxidase-mediated oxidant generation and NF-kappaB activation in endothelial cells. J Biol Chem 2006; 281 (23) 16128-16138
  • 63 Koyasu S. The role of PI3K in immune cells. Nat Immunol 2003; 4 (4) 313-319
  • 64 Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev 2008; 22 (18) 2454-2472
  • 65 Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev 2001; 15 (23) 3059-3087
  • 66 Bhardwaj G, Murdoch B, Wu D , et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2001; 2 (2) 172-180
  • 67 Jung Y, McCall SJ, Li YX, Diehl AM. Bile ductules and stromal cells express hedgehog ligands and/or hedgehog target genes in primary biliary cirrhosis. Hepatology 2007; 45 (5) 1091-1096
  • 68 Omenetti A, Popov Y, Jung Y , et al. The hedgehog pathway regulates remodelling responses to biliary obstruction in rats. Gut 2008; 57 (9) 1275-1282
  • 69 Omenetti A, Syn WK, Jung Y , et al. Repair-related activation of hedgehog signaling promotes cholangiocyte chemokine production. Hepatology 2009; 50 (2) 518-527
  • 70 Tacke F, Luedde T, Trautwein C. Inflammatory pathways in liver homeostasis and liver injury. Clin Rev Allergy Immunol 2009; 36 (1) 4-12
  • 71 Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104 (4) 487-501
  • 72 Del Villar K, Miller CA. Down-regulation of DENN/MADD, a TNF receptor binding protein, correlates with neuronal cell death in Alzheimer's disease brain and hippocampal neurons. Proc Natl Acad Sci U S A 2004; 101 (12) 4210-4215
  • 73 Sleiman PM, Flory J, Imielinski M , et al. Variants of DENND1B associated with asthma in children. N Engl J Med 2012; 366 (7) 672
  • 74 Kitamura K, Nakamoto Y, Akiyama M , et al. Pathogenic roles of tumor necrosis factor receptor p55-mediated signals in dimethylnitrosamine-induced murine liver fibrosis. Lab Invest 2002; 82 (5) 571-583
  • 75 Lleo A, Bowlus CL, Yang GX , et al. Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology 2010; 52 (3) 987-998
  • 76 Neuman M, Angulo P, Malkiewicz I , et al. Tumor necrosis factor-alpha and transforming growth factor-beta reflect severity of liver damage in primary biliary cirrhosis. J Gastroenterol Hepatol 2002; 17 (2) 196-202
  • 77 Pessach IM, Notarangelo LD. X-linked primary immunodeficiencies as a bridge to better understanding X-chromosome related autoimmunity. J Autoimmun 2009; 33 (1) 17-24
  • 78 Lleo A, Moroni L, Caliari L, Invernizzi P. Autoimmunity and Turner's syndrome. Autoimmun Rev 2012; 11 (6-7) A538-A543
  • 79 Selmi C, Invernizzi P, Zuin M, Podda M, Seldin MF, Gershwin ME. Genes and (auto)immunity in primary biliary cirrhosis. Genes Immun 2005; 6 (7) 543-556
  • 80 Selmi C, Invernizzi P, Miozzo M, Podda M, Gershwin ME. Primary biliary cirrhosis: does X mark the spot?. Autoimmun Rev 2004; 3 (7-8) 493-499
  • 81 Bogdanos DP, Smyk DS, Rigopoulou EI , et al. Twin studies in autoimmune disease: genetics, gender and environment. J Autoimmun 2012; 38 (2-3) J156-J169
  • 82 Invernizzi P, Alessio MG, Smyk DS , et al. Autoimmune hepatitis type 2 associated with an unexpected and transient presence of primary biliary cirrhosis-specific antimitochondrial antibodies: a case study and review of the literature. BMC Gastroenterol 2012; 12: 92
  • 83 Smyk DS, Rigopoulou EI, Lleo A , et al. Immunopathogenesis of primary biliary cirrhosis: an old wives' tale. Immun Ageing 2011; 8 (1) 12
  • 84 Smyk DS, Rigopoulou EI, Pares A , et al. Sex differences associated with primary biliary cirrhosis. Clin Dev Immunol 2012; 2012: 610504
  • 85 Smyk DS, Rigopoulou EI, Pares A, Mytilinaiou MG, Invernizzi P, Bogdanos DP. Familial primary biliary cirrhosis: like mother, like daughter?. Acta Gastroenterol Belg 2012; 75 (2) 203-209
  • 86 Svyryd Y, Hernández-Molina G, Vargas F, Sánchez-Guerrero J, Segovia DA, Mutchinick OM. X chromosome monosomy in primary and overlapping autoimmune diseases. Autoimmun Rev 2012; 11 (5) 301-304
  • 87 Lleo A, Battezzati PM, Selmi C, Gershwin ME, Podda M. Is autoimmunity a matter of sex?. Autoimmun Rev 2008; 7 (8) 626-630
  • 88 Miozzo M, Selmi C, Gentilin B , et al. Preferential X chromosome loss but random inactivation characterize primary biliary cirrhosis. Hepatology 2007; 46 (2) 456-462
  • 89 Persani L, Bonomi M, Lleo A , et al. Increased loss of the Y chromosome in peripheral blood cells in male patients with autoimmune thyroiditis. J Autoimmun 2012; 38 (2-3) J193-J196
  • 90 Quintana-Murci L, Krausz C, McElreavey K. The human Y chromosome: function, evolution and disease. Forensic Sci Int 2001; 118 (2-3) 169-181
  • 91 Chueh FY, Leong KF, Cronk RJ, Venkitachalam S, Pabich S, Yu CL. Nuclear localization of pyruvate dehydrogenase complex-E2 (PDC-E2), a mitochondrial enzyme, and its role in signal transducer and activator of transcription 5 (STAT5)-dependent gene transcription. Cell Signal 2011; 23 (7) 1170-1178
  • 92 Noelle RJ, Nowak EC. Cellular sources and immune functions of interleukin-9. Nat Rev Immunol 2010; 10 (10) 683-687
  • 93 Merino R, Fossati L, Lacour M, Izui S. Selective autoantibody production by Yaa+ B cells in autoimmune Yaa(+)-Yaa- bone marrow chimeric mice. J Exp Med 1991; 174 (5) 1023-1029
  • 94 Subramanian S, Tus K, Li QZ , et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci U S A 2006; 103 (26) 9970-9975
  • 95 Fairhurst AM, Hwang SH, Wang A , et al. Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur J Immunol 2008; 38 (7) 1971-1978
  • 96 Santiago-Raber ML, Kikuchi S, Borel P , et al. Evidence for genes in addition to Tlr7 in the Yaa translocation linked with acceleration of systemic lupus erythematosus. J Immunol 2008; 181 (2) 1556-1562
  • 97 Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011; 12 (12) 861-874
  • 98 Katoh H, Zheng P, Liu Y. FOXP3: genetic and epigenetic implications for autoimmunity. J Autoimmun 2013; 41: 72-78
  • 99 Lu Q. The critical importance of epigenetics in autoimmunity. J Autoimmun 2013; 41: 1-5
  • 100 Wang Q, Selmi C, Zhou X , et al. Epigenetic considerations and the clinical reevaluation of the overlap syndrome between primary biliary cirrhosis and autoimmune hepatitis. J Autoimmun 2013; 41: 140-145
  • 101 Selmi C, Mayo MJ, Bach N , et al. Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment. Gastroenterology 2004; 127 (2) 485-492
  • 102 Gay S, Wilson AG. The emerging role of epigenetics in rheumatic diseases. Rheumatology (Oxford) 2014; 53 (3) 406-414
  • 103 Pillai S. Rethinking mechanisms of autoimmune pathogenesis. J Autoimmun 2013; 45: 97-103
  • 104 Costenbader KH, Gay S, Alarcón-Riquelme ME, Iaccarino L, Doria A. Genes, epigenetic regulation and environmental factors: which is the most relevant in developing autoimmune diseases?. Autoimmun Rev 2012; 11 (8) 604-609
  • 105 Selmi C, Cavaciocchi F, Lleo A , et al. Genome-wide analysis of DNA methylation, copy number variation, and gene expression in monozygotic twins discordant for primary biliary cirrhosis. Front Immunol 2014; 5: 128
  • 106 Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 2005; 434 (7031) 400-404
  • 107 Ozbalkan Z, Bagişlar S, Kiraz S , et al. Skewed X chromosome inactivation in blood cells of women with scleroderma. Arthritis Rheum 2005; 52 (5) 1564-1570
  • 108 Brix TH, Knudsen GP, Kristiansen M, Kyvik KO, Orstavik KH, Hegedüs L. High frequency of skewed X-chromosome inactivation in females with autoimmune thyroid disease: a possible explanation for the female predisposition to thyroid autoimmunity. J Clin Endocrinol Metab 2005; 90 (11) 5949-5953
  • 109 Uz E, Loubiere LS, Gadi VK , et al. Skewed X-chromosome inactivation in scleroderma. Clin Rev Allergy Immunol 2008; 34 (03) 352-355
  • 110 Ozcelik T. X chromosome inactivation and female predisposition to autoimmunity. Clin Rev Allergy Immunol 2008; 34 (03) 348-351
  • 111 Higuchi M, Horiuchi T, Kojima T , et al. Analysis of CD40 ligand gene mutations in patients with primary biliary cirrhosis. Scand J Clin Lab Invest 1998; 58 (5) 429-432
  • 112 Zheng Y, Rudensky AY. Foxp3 in control of the regulatory T cell lineage. Nat Immunol 2007; 8 (5) 457-462
  • 113 Padgett KA, Lan RY, Leung PC , et al. Primary biliary cirrhosis is associated with altered hepatic microRNA expression. J Autoimmun 2009; 32 (3-4) 246-253
  • 114 Qin B, Huang F, Liang Y, Yang Z, Zhong R. Analysis of altered microRNA expression profiles in peripheral blood mononuclear cells from patients with primary biliary cirrhosis. J Gastroenterol Hepatol 2013; 28 (3) 543-550
  • 115 Banales JM, Sáez E, Uriz M , et al. Up-regulation of microRNA 506 leads to decreased Cl-/HCO3- anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology 2012; 56 (2) 687-697
  • 116 Ando Y, Yang GX, Kenny TP , et al. Overexpression of microRNA-21 is associated with elevated pro-inflammatory cytokines in dominant-negative TGF-β receptor type II mouse. J Autoimmun 2013; 41: 111-119
  • 117 Ninomiya M, Kondo Y, Funayama R , et al. Distinct microRNAs expression profile in primary biliary cirrhosis and evaluation of miR 505-3p and miR197-3p as novel biomarkers. PLoS ONE 2013; 8 (6) e66086
  • 118 Qian C, Chen SX, Ren CL, Zhong RQ, Deng AM, Qin Q. [Abnormal expression of miR-let-7b in primary biliary cirrhosis and its clinical significance]. Zhonghua Gan Zang Bing Za Zhi 2013; 21 (7) 533-536
  • 119 Hirschfield GM, Liu X, Han Y , et al. Variants at IRF5-TNPO3, 17q12-21 and MMEL1 are associated with primary biliary cirrhosis. Nat Genet 2010; 42 (8) 655-657
  • 120 Liu JZ, Hov JR, Folseraas T , et al; UK-PSCSC Consortium; International IBD Genetics Consortium; International PSC Study Group. Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nat Genet 2013; 45 (6) 670-675
  • 121 Taş S, Avci O. Rapid clearance of psoriatic skin lesions induced by topical cyclopamine. A preliminary proof of concept study. Dermatology 2004; 209 (2) 126-131
  • 122 Feldmann M, Maini RN. Lasker Clinical Medical Research Award. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat Med 2003; 9 (10) 1245-1250
  • 123 Braun J, Davis J, Dougados M, Sieper J, van der Linden S, van der Heijde D. ASAS Working Group. First update of the international ASAS consensus statement for the use of anti-TNF agents in patients with ankylosing spondylitis. Ann Rheum Dis 2006; 65 (3) 316-320
  • 124 Gisondi P, Girolomoni G. Biologic therapies in psoriasis: a new therapeutic approach. Autoimmun Rev 2007; 6 (8) 515-519
  • 125 Rutgeerts P, Vermeire S, Van Assche G. Biological therapies for inflammatory bowel diseases. Gastroenterology 2009; 136 (4) 1182-1197