J Knee Surg 2014; 27(06): 435-442
DOI: 10.1055/s-0034-1388656
Special Focus Section
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Meniscal Scaffolds

Kevin R. Myers
1   Department of Orthopaedics, North Shore–Long Island Jewish Medical Center, New Hyde Park, New York
,
Nicholas A. Sgaglione
1   Department of Orthopaedics, North Shore–Long Island Jewish Medical Center, New Hyde Park, New York
,
Andrew D. Goodwillie
1   Department of Orthopaedics, North Shore–Long Island Jewish Medical Center, New Hyde Park, New York
› Author Affiliations
Further Information

Publication History

21 May 2014

13 July 2014

Publication Date:
30 August 2014 (online)

Abstract

There are two scaffold products designed for meniscal reconstruction or substitution of partial meniscal defects that are currently available in the Europe: the collagen meniscal implant (CMI; Ivy Sports Medicine, Gräfelfing, Germany) and the polymer scaffold (PS; Actifit, Orteq Bioengineering, London, United Kingdom). The CMI has demonstrated improved clinical outcomes compared with baseline in patients with chronic postmeniscectomy symptoms with follow-up ranging from 5 to more than 10 years. There are also several comparative studies that report improved clinical scores in patients with chronic medial meniscus symptoms treated with CMI versus repeat partial meniscectomy, and a lower reoperation rate. Recently, PS insertion was shown to result in improved clinical outcomes in patients with chronic postmeniscectomy symptoms of the medial or lateral meniscus at short-term follow-up. However, there is currently no medium- or long-term data available for the PS. The use of meniscal scaffolds in the acute setting has not been found to result in improved outcomes in most studies. The authors' surgical indications for meniscal scaffold implantation, preferred surgical technique, and postoperative rehabilitation protocol are described.

 
  • References

  • 1 Shoemaker SC, Markolf KL. The role of the meniscus in the anterior-posterior stability of the loaded anterior cruciate-deficient knee. Effects of partial versus total excision. J Bone Joint Surg Am 1986; 68 (1) 71-79
  • 2 Walker PS, Erkman MJ. The role of the menisci in force transmission across the knee. Clin Orthop Relat Res 1975; (109) 184-192
  • 3 Cullen KA, Hall MJ, Golosinskiy A. Ambulatory surgery in the United States, 2006. Natl Health Stat Rep 2009; 20 (11) 1-25
  • 4 Verdonk PCM, Van Laer MEE, Verdonk R. Meniscus replacement: from allograft to tissue engineering. Sports Orthop Traumatol 2008; 24 (2) 78-82
  • 5 Higuchi H, Kimura M, Shirakura K, Terauchi M, Takagishi K. Factors affecting long-term results after arthroscopic partial meniscectomy. Clin Orthop Relat Res 2000; (377) 161-168
  • 6 Rockborn P, Gillquist J. Outcome of arthroscopic meniscectomy. A 13-year physical and radiographic follow-up of 43 patients under 23 years of age. Acta Orthop Scand 1995; 66 (2) 113-117
  • 7 Faunø P, Nielsen AB. Arthroscopic partial meniscectomy: a long-term follow-up. Arthroscopy 1992; 8 (3) 345-349
  • 8 Hede A, Larsen E, Sandberg H. Partial versus total meniscectomy. A prospective, randomised study with long-term follow-up. J Bone Joint Surg Br 1992; 74 (1) 118-121
  • 9 Elattar M, Dhollander A, Verdonk R, Almqvist KF, Verdonk P. Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials. Knee Surg Sports Traumatol Arthrosc 2011; 19 (2) 147-157
  • 10 Chalmers PN, Karas V, Sherman SL, Cole BJ. Return to high-level sport after meniscal allograft transplantation. Arthroscopy 2013; 29 (3) 539-544
  • 11 Brophy RH, Matava MJ. Surgical options for meniscal replacement. J Am Acad Orthop Surg 2012; 20 (5) 265-272
  • 12 Harston A, Nyland J, Brand E, McGinnis M, Caborn DN. Collagen meniscus implantation: a systematic review including rehabilitation and return to sports activity. Knee Surg Sports Traumatol Arthrosc 2012; 20 (1) 135-146
  • 13 Rodkey WG, DeHaven KE, Montgomery III WH , et al. Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J Bone Joint Surg Am 2008; 90 (7) 1413-1426
  • 14 Spencer SJ, Saithna A, Carmont MR, Dhillon MS, Thompson P, Spalding T. Meniscal scaffolds: early experience and review of the literature. Knee 2012; 19 (6) 760-765
  • 15 Stone KR, Steadman JR, Rodkey WG, Li ST. Regeneration of meniscal cartilage with use of a collagen scaffold. Analysis of preliminary data. J Bone Joint Surg Am 1997; 79 (12) 1770-1777
  • 16 Rodkey WG, Steadman JR, Li ST. A clinical study of collagen meniscus implants to restore the injured meniscus. Clin Orthop Relat Res 1999; (367) S281-S292
  • 17 Steadman JR, Rodkey WG. Tissue-engineered collagen meniscus implants: 5- to 6-year feasibility study results. Arthroscopy 2005; 21 (5) 515-525
  • 18 Bulgheroni P, Murena L, Ratti C, Bulgheroni E, Ronga M, Cherubino P. Follow-up of collagen meniscus implant patients: clinical, radiological, and magnetic resonance imaging results at 5 years. Knee 2010; 17 (3) 224-229
  • 19 Monllau JC, Gelber PE, Abat F , et al. Outcome after partial medial meniscus substitution with the collagen meniscal implant at a minimum of 10 years' follow-up. Arthroscopy 2011; 27 (7) 933-943
  • 20 Zaffagnini S, Marcheggiani Muccioli GM, Lopomo N , et al. Prospective long-term outcomes of the medial collagen meniscus implant versus partial medial meniscectomy: a minimum 10-year follow-up study. Am J Sports Med 2011; 39 (5) 977-985
  • 21 Hirschmann MT, Keller L, Hirschmann A , et al. One-year clinical and MR imaging outcome after partial meniscal replacement in stabilized knees using a collagen meniscus implant. Knee Surg Sports Traumatol Arthrosc 2013; 21 (3) 740-747
  • 22 Zaffagnini S, Marcheggiani Muccioli GM, Bulgheroni P , et al. Arthroscopic collagen meniscus implantation for partial lateral meniscal defects: a 2-year minimum follow-up study. Am J Sports Med 2012; 40 (10) 2281-2288
  • 23 Tateishi T, Chen G, Ushida T , et al. Lactide copolymers for scaffolds. In: Lewandrowski KU, Wise DL, Trantolo DJ, Gresser JD, Yasemski MJ, Altobeli DE, , eds. Tissue Engineering. Boca Raton, FL: CRC Press; 2002: 111-122
  • 24 van Minnen B, van Leeuwen MB, Kors G, Zuidema J, van Kooten TG, Bos RR. In vivo resorption of a biodegradable polyurethane foam, based on 1,4-butanediisocyanate: a three-year subcutaneous implantation study. J Biomed Mater Res A 2008; 85 (4) 972-982
  • 25 Zuidema J, van Minnen B, Span MM, Hissink CE, van Kooten TG, Bos RR. In vitro degradation of a biodegradable polyurethane foam, based on 1,4-butanediisocyanate: a three-year study at physiological and elevated temperature. J Biomed Mater Res A 2009; 90 (3) 920-930
  • 26 Verdonk R, Verdonk P, Huysse W, Forsyth R, Heinrichs EL. Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. Am J Sports Med 2011; 39 (4) 774-782
  • 27 Brophy RH, Cottrell J, Rodeo SA, Wright TM, Warren RF, Maher SA. Implantation of a synthetic meniscal scaffold improves joint contact mechanics in a partial meniscectomy cadaver model. J Biomed Mater Res A 2010; 92 (3) 1154-1161
  • 28 Tienen TG, Heijkants RG, de Groot JH , et al. Replacement of the knee meniscus by a porous polymer implant: a study in dogs. Am J Sports Med 2006; 34 (1) 64-71
  • 29 Verdonk P, Beaufils P, Bellemans J , et al; Actifit Study Group. Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold: two-year safety and clinical outcomes. Am J Sports Med 2012; 40 (4) 844-853
  • 30 Efe T, Getgood A, Schofer MD , et al. The safety and short-term efficacy of a novel polyurethane meniscal scaffold for the treatment of segmental medial meniscus deficiency. Knee Surg Sports Traumatol Arthrosc 2012; 20 (9) 1822-1830
  • 31 De Coninck T, Huysse W, Willemot L, Verdonk R, Verstraete K, Verdonk P. Two-year follow-up study on clinical and radiological outcomes of polyurethane meniscal scaffolds. Am J Sports Med 2013; 41 (1) 64-72
  • 32 Bouyarmane H, Beaufils P, Pujol N , et al. Polyurethane scaffold in lateral meniscus segmental defects: clinical outcomes at 24 months follow-up. Orthop Traumatol Surg Res 2014; 100 (1) 153-157
  • 33 Kobayashi M, Chang YS, Oka M. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 2005; 26 (16) 3243-3248
  • 34 Holloway JL, Lowman AM, Palmese GR. Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater 2010; 6 (12) 4716-4724
  • 35 Lu HD, Cai DZ, Wu G, Wang K, Shi DH. Whole meniscus regeneration using polymer scaffolds loaded with fibrochondrocytes. Chin J Traumatol 2011; 14 (4) 195-204
  • 36 Puetzer JL, Bonassar LJ. High density type I collagen gels for tissue engineering of whole menisci. Acta Biomater 2013; 9 (8) 7787-7795
  • 37 Shemesh M, Asher R, Zylberberg E, Guilak F, Linder-Ganz E, Elsner JJ. Viscoelastic properties of a synthetic meniscus implant. J Mech Behav Biomed Mater 2014; 29: 42-55
  • 38 Vangsness Jr CT, Farr II J, Boyd J, Dellaero DT, Mills CR, LeRoux-Williams M. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. J Bone Joint Surg Am 2014; 96 (2) 90-98
  • 39 Insall J, Falvo KA, Wise DW. Chondromalacia Patellae. A prospective study. J Bone Joint Surg Am 1976; 58 (1) 1-8