Semin Respir Crit Care Med 2015; 36(01): 154-166
DOI: 10.1055/s-0034-1398742
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Optimizing Antimicrobial Therapy of Sepsis and Septic Shock: Focus on Antibiotic Combination Therapy

Gloria Vazquez-Grande
1   Section of Critical Care Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
,
Anand Kumar
2   Section of Critical Care Medicine and Section of Infectious Diseases, Department of Medicine, Medical Microbiology and Pharmacology/Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
› Author Affiliations
Further Information

Publication History

Publication Date:
02 February 2015 (online)

Abstract

There has been little improvement in septic shock mortality in the past 70 years, despite ever more broad-spectrum and potent antimicrobials. In the past, resuscitative elements have been the primary area of clinical septic shock management and research. The question of the optimal use of antimicrobial therapy was relatively ignored in recent decades. This review explores the pathophysiology of sepsis in an attempt to produce a better understanding and define key determinants of antimicrobial therapy response in septic shock. Optimizing existing antimicrobials delivery can drive significant improvements in the outcome of sepsis and septic shock. Inappropriate antimicrobial selection and dosing or delays in the administration substantially increase mortality and morbidity in life-threatening infections. Definitive combination therapy (where a pathogen known to be susceptible to a given agent is additionally covered by another agent) remains controversial. Although some in vitro studies, animal models, and clinical studies of infection including endocarditis, gram-negative bacteremia, and neutropenic infections have supported combination therapy, the potential clinical benefit in other severe infections has been questioned. Several meta-analyses have failed to demonstrate improvement of outcome with combination therapy in immunocompetent patients with sepsis and/or gram-negative bacteremia. These meta-analyses did not undertake subgroup analyses of the septic shock population. This article reviews the existing evidence supporting combination therapy for severe infections, sepsis, and septic shock.

 
  • References

  • 1 Sands KE, Bates DW, Lanken PN , et al; Academic Medical Center Consortium Sepsis Project Working Group. Epidemiology of sepsis syndrome in 8 academic medical centers. JAMA 1997; 278 (3) 234-240
  • 2 Brun-Buisson C, Doyon F, Carlet J , et al; French ICU Group for Severe Sepsis. Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. JAMA 1995; 274 (12) 968-974
  • 3 Annane D, Aegerter P, Jars-Guincestre MC, Guidet B ; CUB-Réa Network. Current epidemiology of septic shock: the CUB-Réa Network. Am J Respir Crit Care Med 2003; 168 (2) 165-172
  • 4 Finland M, Jones Jr WF, Barnes MW. Occurrence of serious bacterial infections since introduction of antibacterial agents. J Am Med Assoc 1959; 170 (18) 2188-2197
  • 5 Hemminki E, Paakkulainen A. The effect of antibiotics on mortality from infectious diseases in Sweden and Finland. Am J Public Health 1976; 66 (12) 1180-1184
  • 6 Kreger BE, Craven DE, McCabe WR. Gram-negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am J Med 1980; 68 (3) 344-355
  • 7 Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003; 348 (16) 1546-1554
  • 8 Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001; 29 (7) 1303-1310
  • 9 Eichacker PQ, Natanson C. Increasing evidence that the risks of rhAPC may outweigh its benefits. Intensive Care Med 2007; 33 (3) 396-399
  • 10 Gårdlund B. Activated protein C (Xigris) treatment in sepsis: a drug in trouble. Acta Anaesthesiol Scand 2006; 50 (8) 907-910 A
  • 11 Kumar A. An alternate pathophysiologic paradigm of sepsis and septic shock: implications for optimizing antimicrobial therapy. Virulence 2014; 5 (1) 80-97
  • 12 Bone RC, Sibbald WJ, Sprung CL. The ACCP-SCCM consensus conference on sepsis and organ failure. Chest 1992; 101 (6) 1481-1483
  • 13 Levy MM, Fink MP, Marshall JC , et al; SCCM/ESICM/ACCP/ATS/SIS. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 2003; 31 (4) 1250-1256
  • 14 van der Poll T, van Deventer SJH. Cytokines and anticytokines in the pathogenesis of sepsis. Infect Dis Clin North Am 1999; 13 (2) 413-426 , ix
  • 15 van der Poll T. Coagulation and inflammation. J Endotoxin Res 2001; 7 (4) 301-304
  • 16 Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med 2003; 348 (2) 138-150
  • 17 Remick DG. Pathophysiology of sepsis. Am J Pathol 2007; 170 (5) 1435-1444
  • 18 Freeman BD, Natanson C. Anti-inflammatory therapies in sepsis and septic shock. Expert Opin Investig Drugs 2000; 9 (7) 1651-1663
  • 19 Khatib R, Johnson LB, Fakih MG , et al. Persistence in Staphylococcus aureus bacteremia: incidence, characteristics of patients and outcome. Scand J Infect Dis 2006; 38 (1) 7-14
  • 20 Chowers MY, Gottesman B, Paul M, Weinberger M, Pitlik S, Leibovici L. Persistent bacteremia in the absence of defined intravascular foci: clinical significance and risk factors. Eur J Clin Microbiol Infect Dis 2003; 22 (10) 592-596
  • 21 Kullberg BJ, Sobel JD, Ruhnke M , et al. Voriconazole versus a regimen of amphotericin B followed by fluconazole for candidaemia in non-neutropenic patients: a randomised non-inferiority trial. Lancet 2005; 366 (9495) 1435-1442
  • 22 Reboli AC, Rotstein C, Pappas PG , et al; Anidulafungin Study Group. Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med 2007; 356 (24) 2472-2482
  • 23 Levine DP, Fromm BS, Reddy BR. Slow response to vancomycin or vancomycin plus rifampin in methicillin-resistant Staphylococcus aureus endocarditis. Ann Intern Med 1991; 115 (9) 674-680
  • 24 Wiggers CJ. Experimental haemorrhage shock. In: Physiology of shock: The Commonwealth Fund. New York, NY: Harvard University Press; 1950: 121-143
  • 25 De Luca G, Suryapranata H, Ottervanger JP, Antman EM. Time delay to treatment and mortality in primary angioplasty for acute myocardial infarction: every minute of delay counts. Circulation 2004; 109 (10) 1223-1225
  • 26 Simoons ML, Serruys PW, vd Brand M , et al. Improved survival after early thrombolysis in acute myocardial infarction. A randomised trial by the Interuniversity Cardiology Institute in The Netherlands. Lancet 1985; 2 (8455) 578-582
  • 27 Sampalis JS, Lavoie A, Williams JI, Mulder DS, Kalina M. Impact of on-site care, prehospital time, and level of in-hospital care on survival in severely injured patients. J Trauma 1993; 34 (2) 252-261
  • 28 Vallés J, Rello J, Ochagavía A, Garnacho J, Alcalá MA. Community-acquired bloodstream infection in critically ill adult patients: impact of shock and inappropriate antibiotic therapy on survival. Chest 2003; 123 (5) 1615-1624
  • 29 Ulloa L, Tracey KJ. The “cytokine profile”: a code for sepsis. Trends Mol Med 2005; 11 (2) 56-63
  • 30 Wang H, Czura CJ, Tracey KJ. Lipid unites disparate syndromes of sepsis. Nat Med 2004; 10 (2) 124-125
  • 31 Simon PM, Delude RL, Lee M , et al; GenIMS Investigators. Duration and magnitude of hypotension and monocyte deactivation in patients with community-acquired pneumonia. Shock 2011; 36 (6) 553-559
  • 32 Kumar A, Haery C, Paladugu B , et al. The duration of hypotension before the initiation of antibiotic treatment is a critical determinant of survival in a murine model of Escherichia coli septic shock: association with serum lactate and inflammatory cytokine levels. J Infect Dis 2006; 193 (2) 251-258 A
  • 33 Ovstebo R, Brandtzaeg P, Brusletto B , et al. Use of robotized DNA isolation and real-time PCR to quantify and identify close correlation between levels of Neisseria meningitidis DNA and lipopolysaccharides in plasma and cerebrospinal fluid from patients with systemic meningococcal disease. J Clin Microbiol 2004; 42 (7) 2980-2987
  • 34 Lala HM, Mills GD, Barratt K, Bonning J, Manikkam NE, Martin D. Meningococcal disease deaths and the frequency of antibiotic administration delays. J Infect 2007; 54 (6) 551-557
  • 35 Rello J, Lisboa T, Lujan M , et al; DNA-Neumococo Study Group. Severity of pneumococcal pneumonia associated with genomic bacterial load. Chest 2009; 136 (3) 832-840
  • 36 DuPont HL, Spink WW. Infections due to gram-negative organisms: an analysis of 860 patients with bacteremia at the University of Minnesota Medical Center, 1958-1966. Medicine (Baltimore) 1969; 48 (4) 307-332 A
  • 37 Marra AR, Edmond MB, Forbes BA, Wenzel RP, Bearman GML. Time to blood culture positivity as a predictor of clinical outcome of Staphylococcus aureus bloodstream infection. J Clin Microbiol 2006; 44 (4) 1342-1346
  • 38 Khatib R, Riederer K, Saeed S , et al. Time to positivity in Staphylococcus aureus bacteremia: possible correlation with the source and outcome of infection. Clin Infect Dis 2005; 41 (5) 594-598
  • 39 Liao C-H, Lai C-C, Hsu M-S , et al. Correlation between time to positivity of blood cultures with clinical presentation and outcomes in patients with Klebsiella pneumoniae bacteraemia: prospective cohort study. Clin Microbiol Infect 2009; 15 (12) 1119-1125
  • 40 Peralta G, Roiz MP, Sánchez MB , et al. Time-to-positivity in patients with Escherichia coli bacteraemia. Clin Microbiol Infect 2007; 13 (11) 1077-1082
  • 41 Martínez JA, Soto S, Fabrega A , et al. Relationship of phylogenetic background, biofilm production, and time to detection of growth in blood culture vials with clinical variables and prognosis associated with Escherichia coli bacteremia. J Clin Microbiol 2006; 44 (4) 1468-1474
  • 42 Chuang Y-C, Chang S-C, Wang W-K. Using the rate of bacterial clearance determined by real-time polymerase chain reaction as a timely surrogate marker to evaluate the appropriateness of antibiotic usage in critical patients with Acinetobacter baumannii bacteremia. Crit Care Med 2012; 40 (8) 2273-2280
  • 43 Ehrlich P. Address in pathology on chemiotherapy. : delivered before the Seventeenth International Congress of Medicine. BMJ 1913; 2 (2746) 353-359
  • 44 Ammerlaan H, Seifert H, Harbarth S , et al; European Practices of Infections with Staphylococcus aureus (SEPIA) Study Group. Adequacy of antimicrobial treatment and outcome of Staphylococcus aureus bacteremia in 9 Western European countries. Clin Infect Dis 2009; 49 (7) 997-1005 A
  • 45 Elhanan G, Sarhat M, Raz R. Empiric antibiotic treatment and the misuse of culture results and antibiotic sensitivities in patients with community-acquired bacteraemia due to urinary tract infection. J Infect 1997; 35 (3) 283-288
  • 46 Blot S, Vandewoude K, De Bacquer D, Colardyn F. Nosocomial bacteremia caused by antibiotic-resistant gram-negative bacteria in critically ill patients: clinical outcome and length of hospitalization. Clin Infect Dis 2002; 34 (12) 1600-1606
  • 47 Blot S, Depuydt P, Vogelaers D , et al. Colonization status and appropriate antibiotic therapy for nosocomial bacteremia caused by antibiotic-resistant gram-negative bacteria in an intensive care unit. Infect Control Hosp Epidemiol 2005; 26 (6) 575-579
  • 48 Haddy RI, Nadkarni DD, Mann BL , et al. Clostridial bacteremia in the community hospital. Scand J Infect Dis 2000; 32 (1) 27-30
  • 49 Kumar A, Ellis P, Arabi Y , et al; Cooperative Antimicrobial Therapy of Septic Shock Database Research Group. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 2009; 136 (5) 1237-1248
  • 50 Romero-Vivas J, Rubio M, Fernandez C, Picazo JJ. Mortality associated with nosocomial bacteremia due to methicillin-resistant Staphylococcus aureus. Clin Infect Dis 1995; 21 (6) 1417-1423
  • 51 Nguyen MH, Peacock Jr JE, Tanner DC , et al. Therapeutic approaches in patients with candidemia. Evaluation in a multicenter, prospective, observational study. Arch Intern Med 1995; 155 (22) 2429-2435
  • 52 Garnacho-Montero J, García-Cabrera E, Diaz-Martín A , et al. Determinants of outcome in patients with bacteraemic pneumococcal pneumonia: importance of early adequate treatment. Scand J Infect Dis 2010; 42 (3) 185-192
  • 53 Kumar A, Zarychanski R, Light B , et al; Cooperative Antimicrobial Therapy of Septic Shock (CATSS) Database Research Group. Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: a propensity-matched analysis. Crit Care Med 2010; 38 (9) 1773-1785
  • 54 Kollef MH. Broad-spectrum antimicrobials and the treatment of serious bacterial infections: getting it right up front. Clin Infect Dis 2008; 47 (1) (Suppl. 01) S3-S13
  • 55 Paul M, Shani V, Muchtar E, Kariv G, Robenshtok E, Leibovici L. Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob Agents Chemother 2010; 54 (11) 4851-4863
  • 56 Kollef MH, Sherman G, Ward S, Fraser VJ. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 1999; 115 (2) 462-474
  • 57 Kollef MH, Morrow LE, Niederman MS , et al. Clinical characteristics and treatment patterns among patients with ventilator-associated pneumonia. Chest 2006; 129 (5) 1210-1218
  • 58 Singh N, Rogers P, Atwood CW, Wagener MM, Yu VL. Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med 2000; 162 (2, Pt 1) 505-511
  • 59 Aarts M-A, Brun-Buisson C, Cook DJ , et al. Antibiotic management of suspected nosocomial ICU-acquired infection: does prolonged empiric therapy improve outcome?. Intensive Care Med 2007; 33 (8) 1369-1378
  • 60 Joung MK, Lee JA, Moon S-Y , et al. Impact of de-escalation therapy on clinical outcomes for intensive care unit-acquired pneumonia. Crit Care 2011; 15 (2) R79
  • 61 Anderson DJ, Engemann JJ, Harrell LJ, Carmeli Y, Reller LB, Kaye KS. Predictors of mortality in patients with bloodstream infection due to ceftazidime-resistant Klebsiella pneumoniae. Antimicrob Agents Chemother 2006; 50 (5) 1715-1720
  • 62 Lodise Jr TP, Patel N, Kwa A , et al. Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrob Agents Chemother 2007; 51 (10) 3510-3515
  • 63 Mathevon T, Souweine B, Traoré O, Aublet B, Caillaud D. ICU-acquired nosocomial infection: impact of delay of adequate antibiotic treatment. Scand J Infect Dis 2002; 34 (11) 831-835
  • 64 Morrell M, Fraser VJ, Kollef MH. Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother 2005; 49 (9) 3640-3645
  • 65 Zahar J-R, Azoulay E, Klement E , et al. Delayed treatment contributes to mortality in ICU patients with severe active pulmonary tuberculosis and acute respiratory failure. Intensive Care Med 2001; 27 (3) 513-520
  • 66 Gaieski DF, Mikkelsen ME, Band RA , et al. Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. Crit Care Med 2010; 38 (4) 1045-1053
  • 67 Lueangarun S, Leelarasamee A. Impact of inappropriate empiric antimicrobial therapy on mortality of septic patients with bacteremia: a retrospective study. Interdiscip Perspect Infect Dis 2012; 2012 (2012) 765205
  • 68 Lin MY, Weinstein RA, Hota B. Delay of active antimicrobial therapy and mortality among patients with bacteremia: impact of severe neutropenia. Antimicrob Agents Chemother 2008; 52 (9) 3188-3194
  • 69 Corona A, Bertolini G, Lipman J, Wilson AP, Singer M. Antibiotic use and impact on outcome from bacteraemic critical illness: the Bacteraemia Study in Intensive Care (BASIC). J Antimicrob Chemother 2010; 65 (6) 1276-1285
  • 70 Silber SH, Garrett C, Singh R , et al. Early administration of antibiotics does not shorten time to clinical stability in patients with moderate-to-severe community-acquired pneumonia. Chest 2003; 124 (5) 1798-1804
  • 71 Kaasch AJ, Rieg S, Kuetscher J , et al; preSABATO Study Group. Delay in the administration of appropriate antimicrobial therapy in Staphylococcus aureus bloodstream infection: a prospective multicenter hospital-based cohort study. Infection 2013; 41 (5) 979-985
  • 72 Kumar A, Roberts D, Wood KE , et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006; 34 (6) 1589-1596
  • 73 Lodise TP, McKinnon PS, Swiderski L, Rybak MJ. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis 2003; 36 (11) 1418-1423
  • 74 Menéndez R, Torres A, Reyes S , et al. Initial management of pneumonia and sepsis: factors associated with improved outcome. Eur Respir J 2012; 39 (1) 156-162
  • 75 Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest 2002; 122 (1) 262-268
  • 76 Aronin SI, Peduzzi P, Quagliarello VJ. Community-acquired bacterial meningitis: risk stratification for adverse clinical outcome and effect of antibiotic timing. Ann Intern Med 1998; 129 (11) 862-869
  • 77 Ferrer R, Artigas A, Suarez D , et al; Edusepsis Study Group. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med 2009; 180 (9) 861-866
  • 78 Dellinger RP, Levy MM, Carlet JM , et al; International Surviving Sepsis Campaign Guidelines Committee; American Association of Critical-Care Nurses; American College of Chest Physicians; American College of Emergency Physicians; Canadian Critical Care Society; European Society of Clinical Microbiology and Infectious Diseases; European Society of Intensive Care Medicine; European Respiratory Society; International Sepsis Forum; Japanese Association for Acute Medicine; Japanese Society of Intensive Care Medicine; Society of Critical Care Medicine; Society of Hospital Medicine; Surgical Infection Society; World Federation of Societies of Intensive and Critical Care Medicine. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008; 36 (1) 296-327
  • 79 Taccone FS, Laterre P-F, Dugernier T , et al. Insufficient β-lactam concentrations in the early phase of severe sepsis and septic shock. Crit Care 2010; 14 (4) R126
  • 80 Chelluri L, Jastremski MS. Inadequacy of standard aminoglycoside loading doses in acutely ill patients. Crit Care Med 1987; 15 (12) 1143-1145
  • 81 Ocampos-Martinez E, Penaccini L, Scolletta S , et al. Determinants of early inadequate vancomycin concentrations during continuous infusion in septic patients. Int J Antimicrob Agents 2012; 39 (4) 332-337
  • 82 Varghese JM, Roberts JA, Lipman J. Antimicrobial pharmacokinetic and pharmacodynamic issues in the critically ill with severe sepsis and septic shock. Crit Care Clin 2011; 27 (1) 19-34
  • 83 Pea F, Viale P. Bench-to-bedside review: Appropriate antibiotic therapy in severe sepsis and septic shock—does the dose matter?. Crit Care 2009; 13 (3) 214
  • 84 Calandra T, Glauser MP. Immunocompromised animal models for the study of antibiotic combinations. Am J Med 1986; 80 (5C): 45-52
  • 85 Finberg RW, Moellering RC, Tally FP , et al. The importance of bactericidal drugs: future directions in infectious disease. Clin Infect Dis 2004; 39 (9) 1314-1320
  • 86 Pankey GA, Sabath LD. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis 2004; 38 (6) 864-870
  • 87 Lepper MH, Dowling HF ; MH L. Treatment of pneumococcic meningitis with penicillin compared with penicillin plus aureomycin; studies including observations on an apparent antagonism between penicillin and aureomycin. AMA Arch Intern Med 1951; 88 (4) 489-494
  • 88 Weinstein MP, Stratton CW, Ackley A , et al. Multicenter collaborative evaluation of a standardized serum bactericidal test as a prognostic indicator in infective endocarditis. Am J Med 1985; 78 (2) 262-269
  • 89 Mylonakis E, Calderwood SB. Infective endocarditis in adults. N Engl J Med 2001; 345 (18) 1318-1330
  • 90 Weinstein MP, Stratton CW, Hawley HB, Ackley A, Reller LB. Multicenter collaborative evaluation of a standardized serum bactericidal test as a predictor of therapeutic efficacy in acute and chronic osteomyelitis. Am J Med 1987; 83 (2) 218-222
  • 91 Sculier JP, Klastersky J. Significance of serum bactericidal activity in gram-negative bacillary bacteremia in patients with and without granulocytopenia. Am J Med 1984; 76 (3) 429-435
  • 92 Small PM, Chambers HF. Vancomycin for Staphylococcus aureus endocarditis in intravenous drug users. Antimicrob Agents Chemother 1990; 34 (6) 1227-1231
  • 93 Khatib R, Saeed S, Sharma M, Riederer K, Fakih MG, Johnson LB. Impact of initial antibiotic choice and delayed appropriate treatment on the outcome of Staphylococcus aureus bacteremia. Eur J Clin Microbiol Infect Dis 2006; 25 (3) 181-185
  • 94 Kim S-H, Kim K-H, Kim H-B , et al. Outcome of vancomycin treatment in patients with methicillin-susceptible Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 2008; 52 (1) 192-197
  • 95 Rubinstein E, Cammarata S, Oliphant T, Wunderink R ; Linezolid Nosocomial Pneumonia Study Group. Linezolid (PNU-100766) versus vancomycin in the treatment of hospitalized patients with nosocomial pneumonia: a randomized, double-blind, multicenter study. Clin Infect Dis 2001; 32 (3) 402-412
  • 96 Fagon J, Patrick H, Haas DW , et al; Nosocomial Pneumonia Group. Treatment of gram-positive nosocomial pneumonia. Prospective randomized comparison of quinupristin/dalfopristin versus vancomycin. Am J Respir Crit Care Med 2000; 161 (3, Pt 1) 753-762
  • 97 Fowler Jr VG, Boucher HW, Corey GR , et al; S. aureus Endocarditis and Bacteremia Study Group. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 2006; 355 (7) 653-665
  • 98 McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents 2008; 31 (4) 345-351
  • 99 Crandon JL, Bulik CC, Kuti JL, Nicolau DP. Clinical pharmacodynamics of cefepime in patients infected with Pseudomonas aeruginosa. Antimicrob Agents Chemother 2010; 54 (3) 1111-1116
  • 100 Chytra I, Stepan M, Benes J , et al. Clinical and microbiological efficacy of continuous versus intermittent application of meropenem in critically ill patients: a randomized open-label controlled trial. Crit Care 2012; 16 (3) R113
  • 101 Lorente L, Jiménez A, Martín MM, Iribarren JL, Jiménez JJ, Mora ML. Clinical cure of ventilator-associated pneumonia treated with piperacillin/tazobactam administered by continuous or intermittent infusion. Int J Antimicrob Agents 2009; 33 (5) 464-468
  • 102 Lorente L, Jiménez A, Palmero S , et al. Comparison of clinical cure rates in adults with ventilator-associated pneumonia treated with intravenous ceftazidime administered by continuous or intermittent infusion: a retrospective, nonrandomized, open-label, historical chart review. Clin Ther 2007; 29 (11) 2433-2439
  • 103 Lorente L, Lorenzo L, Martín MM, Jiménez A, Mora ML. Meropenem by continuous versus intermittent infusion in ventilator-associated pneumonia due to gram-negative bacilli. Ann Pharmacother 2006; 40 (2) 219-223
  • 104 Lodise Jr TP, Lomaestro B, Drusano GL. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis 2007; 44 (3) 357-363
  • 105 Kasiakou SK, Sermaides GJ, Michalopoulos A, Soteriades ES, Falagas ME. Continuous versus intermittent intravenous administration of antibiotics: a meta-analysis of randomised controlled trials. Lancet Infect Dis 2005; 5 (9) 581-589
  • 106 Roberts JA, Webb S, Paterson D, Ho KM, Lipman J. A systematic review on clinical benefits of continuous administration of beta-lactam antibiotics. Crit Care Med 2009; 37 (6) 2071-2078
  • 107 Scaglione F, Mouton JW, Mattina R, Fraschini F. Pharmacodynamics of levofloxacin and ciprofloxacin in a murine pneumonia model: peak concentration/MIC versus area under the curve/MIC ratios. Antimicrob Agents Chemother 2003; 47 (9) 2749-2755
  • 108 Winterboer TM, Lecci KA, Olsen KM. Continuing education: alternative approaches to optimizing antimicrobial pharmacodynamics in critically ill patients. J Pharm Pract 2010; 23 (1) 6-18
  • 109 Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 1993; 37 (5) 1073-1081
  • 110 Moore RD, Smith CR, Lietman PS. Association of aminoglycoside plasma levels with therapeutic outcome in gram-negative pneumonia. Am J Med 1984; 77 (4) 657-662
  • 111 Moore RD, Smith CR, Lietman PS. The association of aminoglycoside plasma levels with mortality in patients with gram-negative bacteremia. J Infect Dis 1984; 149 (3) 443-448
  • 112 Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis 1987; 155 (1) 93-99
  • 113 Kullar R, Davis SL, Levine DP, Rybak MJ. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: support for consensus guidelines suggested targets. Clin Infect Dis 2011; 52 (8) 975-981
  • 114 Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet 2004; 43 (13) 925-942
  • 115 Zelenitsky S, Rubinstein E, Ariano R , et al; Cooperative Antimicrobial Therapy of Septic Shock-CATSS Database Research Group. Vancomycin pharmacodynamics and survival in patients with methicillin-resistant Staphylococcus aureus-associated septic shock. Int J Antimicrob Agents 2013; 41 (3) 255-260
  • 116 Chow JW, Yu VL. Combination antibiotic therapy versus monotherapy for gram-negative bacteraemia: a commentary. Int J Antimicrob Agents 1999; 11 (1) 7-12 A
  • 117 Micek ST, Welch EC, Khan J , et al. Empiric combination antibiotic therapy is associated with improved outcome against sepsis due to Gram-negative bacteria: a retrospective analysis. Antimicrob Agents Chemother 2010; 54 (5) 1742-1748
  • 118 Giamarellou H, Zissis NP, Tagari G, Bouzos J. In vitro synergistic activities of aminoglycosides and new beta-lactams against multiresistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 1984; 25 (4) 534-536
  • 119 Klastersky J, Zinner SH. Synergistic combinations of antibiotics in gram-negative bacillary infections. Rev Infect Dis 1982; 4 (2) 294-301
  • 120 Mouton JW. Combination therapy as a tool to prevent emergence of bacterial resistance. Infection 1999; 27 (Suppl. 02) S24-S28
  • 121 Anderson ET, Young LS, Hewitt WL. Antimicrobial synergism in the therapy of gram-negative rod bacteremia. Chemotherapy 1978; 24 (1) 45-54
  • 122 Giamarellou H. Aminoglycosides plus beta-lactams against gram-negative organisms. Evaluation of in vitro synergy and chemical interactions. Am J Med 1986; 80 (6B): 126-137
  • 123 Kluge RM, Standiford HC, Tatem B , et al. Comparative activity of tobramycin, amikacin, and gentamicin alone and with carbenicillin against Pseudomonas aeruginosa. Antimicrob Agents Chemother 1974; 6 (4) 442-446 A
  • 124 Neu HC. Synergy and antagonism of fluoroquinolones with other classes of antimicrobial agents. Drugs 1993; 45 (Suppl. 03) 54-58
  • 125 Pohlman JK, Knapp CC, Ludwig MD, Washington JA. Timed killing kinetic studies of the interaction between ciprofloxacin and β-lactams against gram-negative bacilli. Diagn Microbiol Infect Dis 1996; 26 (1) 29-33
  • 126 MacGowan AR, Bowker K, Bedford KA, Holt HA, Reeves DS. Synergy testing of macrolide combinations using the chequerboard technique. J Antimicrob Chemother 1993; 32 (6) 913-915
  • 127 Manian FA, Meyer L, Jenne J, Owen A, Taff T. Loss of antimicrobial susceptibility in aerobic gram-negative bacilli repeatedly isolated from patients in intensive-care units. Infect Control Hosp Epidemiol 1996; 17 (4) 222-226
  • 128 Safdar N, Handelsman J, Maki DG. Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. Lancet Infect Dis 2004; 4 (8) 519-527
  • 129 Marcus R, Paul M, Elphick H, Leibovici L. Clinical implications of β-lactam-aminoglycoside synergism: systematic review of randomised trials. Int J Antimicrob Agents 2011; 37 (6) 491-503
  • 130 Paul M, Benuri-Silbiger I, Soares-Weiser K, Leibovici L. Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials. BMJ 2004; 328 (7441) 668
  • 131 Paul M, Silbiger I, Grozinsky S, Soares-Weiser K, Leibovici L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev 2006; (1) CD003344
  • 132 Paul M, Lador A, Grozinsky-Glasberg S, Leibovici L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev 2014; 1: CD003344
  • 133 Paul M, Soares-Weiser K, Leibovici L. Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for fever with neutropenia: systematic review and meta-analysis. BMJ 2003; 326 (7399) 1111
  • 134 Waterer GW, Somes GW, Wunderink RG. Monotherapy may be suboptimal for severe bacteremic pneumococcal pneumonia. Arch Intern Med 2001; 161 (15) 1837-1842
  • 135 Baddour LM, Yu VL, Klugman KP , et al; International Pneumococcal Study Group. Combination antibiotic therapy lowers mortality among severely ill patients with pneumococcal bacteremia. Am J Respir Crit Care Med 2004; 170 (4) 440-444
  • 136 Rodríguez A, Mendia A, Sirvent J-M , et al; CAPUCI Study Group. Combination antibiotic therapy improves survival in patients with community-acquired pneumonia and shock. Crit Care Med 2007; 35 (6) 1493-1498
  • 137 Hilf M, Yu VL, Sharp J, Zuravleff JJ, Korvick JA, Muder RR. Antibiotic therapy for Pseudomonas aeruginosa bacteremia: outcome correlations in a prospective study of 200 patients. Am J Med 1989; 87 (5) 540-546
  • 138 Korvick JA, Bryan CS, Farber B , et al. Prospective observational study of Klebsiella bacteremia in 230 patients: outcome for antibiotic combinations versus monotherapy. Antimicrob Agents Chemother 1992; 36 (12) 2639-2644 A
  • 139 Kumar A, Safdar N, Kethireddy S, Chateau D. A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med 2010; 38 (8) 1651-1664
  • 140 Abad CL, Kumar A, Safdar N. Antimicrobial therapy of sepsis and septic shock—when are two drugs better than one?. Crit Care Clin 2011; 27 (2) e1-e27
  • 141 Brunkhorst FM, Oppert M, Marx G , et al; German Study Group Competence Network Sepsis (SepNet). Effect of empirical treatment with moxifloxacin and meropenem vs meropenem on sepsis-related organ dysfunction in patients with severe sepsis: a randomized trial. JAMA 2012; 307 (22) 2390-2399
  • 142 Delannoy P-Y, Boussekey N, Devos P , et al. Impact of combination therapy with aminoglycosides on the outcome of ICU-acquired bacteraemias. Eur J Clin Microbiol Infect Dis 2012; 31 (9) 2293-2299