Klin Monbl Augenheilkd 2015; 232(11): 1289-1296
DOI: 10.1055/s-0035-1546176
Klinische Studie
Georg Thieme Verlag KG Stuttgart · New York

Vergleich von intravitrealem Dexamethason-Implantat mit intravitrealem Ranibizumab als Erstbehandlung des Makulaödems bei retinalen venösen Gefäßverschlüssen

Comparison of Intravitreal Dexamethasone Implant versus Intravitreal Ranibizumab as a First-Line Treatment of Macular Oedema due to Retinal Vein Occlusion
W. J. Mayer
1   Augenklinik der Ludwig-Maximilians-Universität München
,
A. Hadjigoli
2   Augenklinik des Bürgerhospitals Frankfurt am Main
,
A. Wolf
1   Augenklinik der Ludwig-Maximilians-Universität München
,
T. Herold
1   Augenklinik der Ludwig-Maximilians-Universität München
,
C. Haritoglou
3   Augenklinik Herzog Carl Theodor München
› Author Affiliations
Further Information

Publication History

eingereicht 19 December 2014

akzeptiert 01 June 2015

Publication Date:
21 July 2015 (online)

Zusammenfassung

Hintergrund: Die vorliegende Arbeit untersucht den Vergleich der intravitrealen Therapie mit Dexamethason-Implantat (Ozurdex®, Gruppe 1) und Anti-VEGF-Injektion (Lucentis®, Gruppe 2) zur Behandlung des Makulaödems bei retinalen venösen Gefäßverschlüssen in einer retrospektiven, nicht randomisierten Fallserie. Material und Methoden: Gruppe 1 enthielt 60 Patienten (31 mit zentralem Venenverschluss [ZVV] und 29 mit Venenastverschluss [VAV]) und Gruppe 2 52 Patienten (27 mit ZVV und 25 mit VAV). Im Falle eines Rezidivs wurden beide Gruppen jeweils weiter behandelt. Präoperativ und monatlich wurden die bestkorrigierte Sehschärfe (BKSS) und der intraokulare Druck (IOD) bestimmt, die zentrale Netzhautdicke mittels SD-OCT (Spectralis, Heidelberg Engineering) erhoben sowie eine Biomikroskopie und Fundusfotodokumentation durchgeführt. Primärer klinischer Endpunkt war die Visusentwicklung 12 Monate nach der 1. intravitrealen Therapie, sekundäre Endpunkte waren die zentrale Netzhautdicke und die Sicherheit der Therapie. Ergebnisse: Nach 12 Monaten wurde in der Gruppe 1 bei den ZVV-Patienten ein Anstieg der BKSS (± Standardabweichung) von 8,4 (± 1,9) Buchstaben, bei den VAV-Patienten ein Gewinn von 10,7 (± 3,8) Buchstaben beobachtet. In Gruppe 2 zeigten die ZVV-Patienten eine Zunahme der BKSS von 6,9 (± 1,9) Buchstaben nach 12 Monaten im Vergleich zu 12,5 (± 3,7) Buchstaben bei den VAV-Patienten. In beiden Gruppen konnte eine signifikante Reduktion der zentralen Netzhautdicke erreicht werden. Der IOD zeigte in knapp der Hälfte aller Fälle in Gruppe 1 einen Anstieg über 5 mmHg, konnte aber durch konservative antiglaukomatöse Therapie in den Fällen mit einem IOD über 21 mmHg (obere Normgrenze) in der Behandlungsphase gut reguliert werden. Allerdings zeigte sich bereits nach 2-maliger Ozurdex-Injektion (Gruppe 1) in ca. 50 % der Fälle eine Progression einer Linsentrübung. Schlussfolgerung: Ein direkter Vergleich beider Therapiestrategien zeigt einen signifikanten Unterschied in der Wirkung auf das funktionelle Ergebnis. Im Trend führt eine Behandlung mit Ozurdex bei den ZVV, Lucentis bei den VAV zu einem etwas besseren Sehschärfenanstieg nach 12 Monaten. Unabhängig von den Ergebnissen muss für Ozurdex der Linsenstatus und das Alter des Patienten berücksichtigt werden.

Abstract

Purpose: The present study investigated the treatment effect of dexamethasone implant (Ozurdex®, group 1) and anti-VEGF injection (Lucentis®, group 2) in course of macular oedema due to retinal vein occlusion in a retrospective, non-randomised case series. Material and Methods: Group 1 comprised 60 patients (31 with CRVO and 29 with BRVO) and group 2 included 52 patients, 27 with CRVO and 25 with BRVO) and both groups were further treated in case of recurrence. Preoperative and in monthly intervals best corrected visual acuity (BCVA), central retinal thickness using SD-OCT (Spectralis, Heidelberg Engineering), intraocular pressure, biomicroscopy status and a fundus photo documentation (Optomap) were evaluated. The primary clinical endpoint was visual acuity 12 months after the first intravitreal therapy, while secondary endpoints included the central retinal thickness change and safety of therapy. Results: In group 1, an increase of BCVA (± standard deviation) of 8.4 (± 1.9) letters was observed in CRVO patients and a gain of 10.7 (± 3.8) letters in BRVO patients after 12 months, while in group 2, an increase of BCVA of 6.9 (± 1.9) letters (CRVO) compared to 12.5 (± 3.7) letters (BRVO) was observed after the same time span. In both groups a significant reduction in retinal thickness was achieved. An increase of intraocular pressure above 5 mmHg was observed in nearly half of the cases In group 1, but was well controlled by conservative antiglaucomatous therapy. We observed a progression of lens opacity in approximately 50 % of the cases in group 1. Conclusion: The treatment with Ozurdex compared to Lucentis appears to provide a trend towards a better although not significant visual acuity increase after 12 months in CRVO patients. A similar trend favouring anti-VEGF treatment with Lucentis was seen in patients with BRVO. However, the lens status and age of the patient should be taken into account when considering a treatment with Ozurdex.

 
  • Literatur

  • 1 Zhao J, Sastry SM, Sperduto RD et al. Arteriovenous crossing patterns in branch retinal vein occlusion. The Eye Disease Case-Control Study Group. Ophthalmology 1993; 100: 423-428
  • 2 Christoffersen NL, Larsen M. Pathophysiology and hemodynamics of branch retinal vein occlusion. Ophthalmology 1999; 106: 2054-2062
  • 3 Williamson TH. Central retinal vein occlusion: whatʼs the story?. Br J Ophthalmol 1997; 81: 698-704
  • 4 Haymore JG, Mejico LJ. Retinal vascular occlusion syndromes. Int Ophthalmol Clin 2009; 49: 63-79
  • 5 Mayer WJ, Remy M, Wolf A et al. Comparison of intravitreal bevacizumab upload followed by a dexamethasone implant versus dexamethasone implant monotherapy for retinal vein occlusion with macular edema. Ophthalmologica 2012; 228: 110-116
  • 6 Siik S, Chylack jr. LT, Friend J et al. Lens autofluorescence and light scatter in relation to the lens opacities classification system, LOCS III. Acta Ophthalmol Scand 1999; 77: 509-514
  • 7 The Central Vein Occlusion Study Group. A randomized clinical trial of early panretinal photocoagulation for ischemic central vein occlusion. The Central Vein Occlusion Study Group N report. Ophthalmology 1995; 102: 1434-1444
  • 8 The Branch Vein Occlusion Study Group. Argon laser photocoagulation for macular edema in branch vein occlusion. Am J Ophthalmol 1984; 98: 271-282
  • 9 Haller JA, Bandello F, Belfort jr. R et al. Dexamethasone intravitreal implant in patients with macular edema related to branch or central retinal vein occlusion twelve-month study results. Ophthalmology 2011; 118: 2453-2460
  • 10 Haller JA, Bandello F, Belfort jr. R et al. Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion. Ophthalmology 2010; 117: 1134-1146
  • 11 Campochiaro PA, Brown DM, Awh CC et al. Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: twelve-month outcomes of a phase III study. Ophthalmology 2011; 118: 2041-2049
  • 12 Brown DM, Campochiaro PA, Bhisitkul RB et al. Sustained benefits from ranibizumab for macular edema following branch retinal vein occlusion: 12-month outcomes of a phase III study. Ophthalmology 2011; 118: 1594-1602
  • 13 Campochiaro PA, Heier JS, Feiner L et al. Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology 2010; 117: 1102-1112.e1
  • 14 Brown DM, Campochiaro PA, Singh RP et al. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology 2010; 117: 1124-1133.e1
  • 15 Okunuki Y, Usui Y, Katai N et al. Relation of intraocular concentrations of inflammatory factors and improvement of macular edema after vitrectomy in branch retinal vein occlusion. Am J Ophthalmol 2011; 151: 610-616.e1
  • 16 Noma H, Funatsu H, Mimura T et al. Increase of aqueous inflammatory factors in macular edema with branch retinal vein occlusion: a case control study. J Inflamm (Lond) 2010; 7: 44
  • 17 Ki IY, Arimura N, Noda Y et al. Stromal-derived factor-1 and inflammatory cytokines in retinal vein occlusion. Curr Eye Res 2007; 32: 1065-1072
  • 18 Antonetti DA, Wolpert EB, DeMaio L et al. Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin. J Neurochem 2002; 80: 667-677
  • 19 Nauck M, Karakiulakis G, Perruchoud AP et al. Corticosteroids inhibit the expression of the vascular endothelial growth factor gene in human vascular smooth muscle cells. Eur J Pharmacol 1998; 341: 309-315
  • 20 Adamis AP, Miller JW, Bernal MT et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 1994; 118: 445-450
  • 21 McGimpsey SJ, Woodside JV, Cardwell C et al. Homocysteine, methylenetetrahydrofolate reductase C677 T polymorphism, and risk of retinal vein occlusion: a meta-analysis. Ophthalmology 2009; 116: 1778-1787.e1
  • 22 Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med 1999; 340: 115-126
  • 23 Kaneda S, Miyazaki D, Sasaki S et al. Multivariate analyses of inflammatory cytokines in eyes with branch retinal vein occlusion: relationships to bevacizumab treatment. Invest Ophthalmol Vis Sci 2011; 52: 2982-2988
  • 24 Noma H, Funatsu H, Harino S et al. Vitreous inflammatory factors in macular edema with central retinal vein occlusion. Jpn J Ophthalmol 2011; 55: 248-255
  • 25 Bakri SJ, Snyder MR, Reid JM et al. Pharmacokinetics of intravitreal ranibizumab (Lucentis). Ophthalmology 2007; 114: 2179-2182
  • 26 Antonetti DA, Barber AJ, Khin S et al. Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group. Diabetes 1998; 47: 1953-1959
  • 27 Ip MS, Scott IU, VanVeldhuisen PC et al. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with observation to treat vision loss associated with macular edema secondary to central retinal vein occlusion: the Standard Care vs. Corticosteroid for Retinal Vein Occlusion (SCORE) study report 5. Arch Ophthalmol 2009; 127: 1101-1114
  • 28 Scott IU, Ip MS, VanVeldhuisen PC et al. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with standard care to treat vision loss associated with macular Edema secondary to branch retinal vein occlusion: the Standard Care vs. Corticosteroid for Retinal Vein Occlusion (SCORE) study report 6. Arch Ophthalmol 2009; 127: 1115-1128
  • 29 Nabih M, Peyman GA, Tawakol ME et al. Toxicity of high-dose intravitreal dexamethasone. Int Ophthalmol 1991; 15: 233-235
  • 30 Augustin AJ, Holz FG, Haritoglou C et al. Retrospective, observational study in patients receiving a dexamethasone intravitreal implant 0.7 mg for macular oedema secondary to retinal vein occlusion. Ophthalmologica 2015; 233: 18-26
  • 31 Bezatis A, Spital G, Hohn F et al. Functional and anatomical results after a single intravitreal Ozurdex injection in retinal vein occlusion: a 6-month follow-up – the SOLO study. Acta Ophthalmol 2013; 91: e340-e347
  • 32 Schmitz K, Maier M, Clemens CR et al. [Reliability and safety of intravitreal Ozurdex injections. The ZERO study]. Ophthalmologe 2014; 111: 44-52