Semin Neurol 2015; 35(05): 564-577
DOI: 10.1055/s-0035-1563579
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Optical Coherence Tomography for the Neurologist

Rachel C. Nolan
1   Departments of Neurology, New York University School of Medicine, New York, New York
,
Kannan Narayana
1   Departments of Neurology, New York University School of Medicine, New York, New York
,
Steven L. Galetta
1   Departments of Neurology, New York University School of Medicine, New York, New York
2   Departments of Ophthalmology, New York University School of Medicine, New York, New York
,
Laura J. Balcer
1   Departments of Neurology, New York University School of Medicine, New York, New York
2   Departments of Ophthalmology, New York University School of Medicine, New York, New York
3   Departments of Population Health, New York University School of Medicine, New York, New York
› Author Affiliations
Further Information

Publication History

Publication Date:
06 October 2015 (online)

Abstract

Optical coherence tomography (OCT) is a relatively new technology that is now routinely and very widely used by ophthalmologists for structural documentation of the optic nerve and retina. In neuro-ophthalmology and neurology, the value of OCT is ever expanding; its role in an increasing number of conditions is being reported in parallel with the advances of the technology. Currently, as a clinical tool, OCT is particularly useful for the structural measurement of peripapillary retinal nerve fiber layer thickness, optic nerve head volumetric analysis, and macular anatomy. Optic neuropathies of varied etiology (particularly from multiple sclerosis) may be the most common clinical indications for neurologists to obtain OCT imaging. Documentation and follow-up of disc edema of varied etiology (papilledema and idiopathic intracranial hypertension), discriminating true disc swelling from pseudopapilledema, and differentiating optic neuropathy from maculopathy are some other examples from clinical practice.

 
  • References

  • 1 Jones AL, Sheen NJL, North RV, Morgan JE. The Humphrey optical coherence tomography scanner: quantitative analysis and reproducibility study of the normal human retinal nerve fibre layer. Br J Ophthalmol 2001; 85 (6) 673-677
  • 2 Blumenthal EZ, Williams JM, Weinreb RN, Girkin CA, Berry CC, Zangwill LM. Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography. Ophthalmology 2000; 107 (12) 2278-2282
  • 3 Paunescu LA, Schuman JS, Price LL , et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. Invest Ophthalmol Vis Sci 2004; 45 (6) 1716-1724
  • 4 Kanamori A, Nakamura M, Escano MFT, Seya R, Maeda H, Negi A. Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol 2003; 135 (4) 513-520
  • 5 Medeiros FA, Moura FC, Vessani RM, Susanna Jr R. Axonal loss after traumatic optic neuropathy documented by optical coherence tomography. Am J Ophthalmol 2003; 135 (3) 406-408
  • 6 Monteiro MLR, Leal BC, Rosa AAM, Bronstein MD. Optical coherence tomography analysis of axonal loss in band atrophy of the optic nerve. Br J Ophthalmol 2004; 88 (7) 896-899
  • 7 Parisi V, Manni G, Spadaro M , et al. Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci 1999; 40 (11) 2520-2527
  • 8 Bodis-Wollner I, Miri S, Glazman S. Venturing into the no-man's land of the retina in Parkinson's disease. Mov Disord 2014; 29 (1) 15-22
  • 9 Schippling S, Balk LJ, Costello F , et al. Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult Scler 2015; 21 (2) 163-170
  • 10 Harwerth RS, Vilupuru AS, Rangaswamy NV, Smith III EL. The relationship between nerve fiber layer and perimetry measurements. Invest Ophthalmol Vis Sci 2007; 48 (2) 763-773
  • 11 Kanamori A, Escano MF, Eno A , et al. Evaluation of the effect of aging on retinal nerve fiber layer thickness measured by optical coherence tomography. Ophthalmologica 2003; 217 (4) 273-278
  • 12 Oberwahrenbrock T, Schippling S, Ringelstein M , et al. Retinal damage in multiple sclerosis disease subtypes measured by high-resolution optical coherence tomography. Mult Scler Int 2012; 2012: 530305
  • 13 Gelfand JM, Goodin DS, Boscardin WJ, Nolan R, Cuneo A, Green AJ. Retinal axonal loss begins early in the course of multiple sclerosis and is similar between progressive phenotypes. PLoS ONE 2012; 7 (5) e36847
  • 14 Sakai RE, Feller DJ, Galetta KM, Galetta SL, Balcer LJ. Vision in multiple sclerosis: the story, structure-function correlations, and models for neuroprotection. J Neuroophthalmol 2011; 31 (4) 362-373
  • 15 Ikuta F, Zimmerman HM. Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States. Neurology 1976; 26 (6 PT 2) 26-28
  • 16 Toussaint D, Périer O, Verstappen A, Bervoets S. Clinicopathological study of the visual pathways, eyes, and cerebral hemispheres in 32 cases of disseminated sclerosis. J Clin Neuroophthalmol 1983; 3 (3) 211-220
  • 17 Trip SA, Schlottmann PG, Jones SJ , et al. Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol 2005; 58 (3) 383-391
  • 18 Petzold A, de Boer JF, Schippling S , et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 2010; 9 (9) 921-932
  • 19 Costello F, Coupland S, Hodge W , et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 2006; 59 (6) 963-969
  • 20 Gabilondo I, Martínez-Lapiscina EH, Fraga-Pumar E , et al. Dynamics of retinal injury after acute optic neuritis. Ann Neurol 2015; 77 (3) 517-528
  • 21 Rebolleda G, de Dompablo E, Muñoz-Negrete FJ. Ganglion cell layer analysis unmasks axonal loss in anterior optic neuritis. J Neuroophthalmol 2015; 35 (2) 165-167
  • 22 Henderson AP, Altmann DR, Trip AS , et al. A serial study of retinal changes following optic neuritis with sample size estimates for acute neuroprotection trials. Brain 2010; 133 (9) 2592-2602
  • 23 Kupersmith M, Garvin M, Wang J, Durbin M, Kardon R. Retinal ganglion cell layer thinning within one month of presentation for non-arteritic anterior ischemic optic neuropathy and optic neuritis (P2.286). Poster presented at: American Academy of Neurology, Neuro-ophthalmology/Neuro-otology I. Poster Session II; Philadelphia, PA; April 29, 2014
  • 24 Costello F, Hodge W, Pan YI, Eggenberger E, Freedman MS. Using retinal architecture to help characterize multiple sclerosis patients. Can J Ophthalmol 2010; 45 (5) 520-526
  • 25 Pulicken M, Gordon-Lipkin E, Balcer LJ, Frohman E, Cutter G, Calabresi PA. Optical coherence tomography and disease subtype in multiple sclerosis. Neurology 2007; 69 (22) 2085-2092
  • 26 Galetta KM, Graves J, Talman LS , et al. Visual pathway axonal loss in benign multiple sclerosis: a longitudinal study. J Neuroophthalmol 2012; 32 (2) 116-123
  • 27 Pro MJ, Pons ME, Liebmann JM , et al. Imaging of the optic disc and retinal nerve fiber layer in acute optic neuritis. J Neurol Sci 2006; 250 (1-2) 114-119
  • 28 Cheng H, Laron M, Schiffman JS, Tang RA, Frishman LJ. The relationship between visual field and retinal nerve fiber layer measurements in patients with multiple sclerosis. Invest Ophthalmol Vis Sci 2007; 48 (12) 5798-5805
  • 29 Costello F, Hodge W, Pan YI, Freedman M, DeMeulemeester C. Differences in retinal nerve fiber layer atrophy between multiple sclerosis subtypes. J Neurol Sci 2009; 281 (1-2) 74-79
  • 30 Frohman EM, Dwyer MG, Frohman T , et al. Relationship of optic nerve and brain conventional and non-conventional MRI measures and retinal nerve fiber layer thickness, as assessed by OCT and GDx: a pilot study. J Neurol Sci 2009; 282 (1-2) 96-105
  • 31 Fisher JB, Jacobs DA, Markowitz CE , et al. Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 2006; 113 (2) 324-332
  • 32 Grazioli E, Zivadinov R, Weinstock-Guttman B , et al. Retinal nerve fiber layer thickness is associated with brain MRI outcomes in multiple sclerosis. J Neurol Sci 2008; 268 (1-2) 12-17
  • 33 Klistorner A, Arvind H, Nguyen T , et al. Axonal loss and myelin in early ON loss in postacute optic neuritis. Ann Neurol 2008; 64 (3) 325-331
  • 34 Merle H, Olindo S, Donnio A , et al. Retinal nerve fiber layer thickness and spatial and temporal contrast sensitivity in multiple sclerosis. Eur J Ophthalmol 2010; 20 (1) 158-166
  • 35 Pueyo V, Martin J, Fernandez J , et al. Axonal loss in the retinal nerve fiber layer in patients with multiple sclerosis. Mult Scler 2008; 14 (5) 609-614
  • 36 Ratchford JN, Quigg ME, Conger A , et al. Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology 2009; 73 (4) 302-308
  • 37 Spain RI, Maltenfort M, Sergott RC, Leist TP. Thickness of retinal nerve fiber layer correlates with disease duration in parallel with corticospinal tract dysfunction in untreated multiple sclerosis. J Rehabil Res Dev 2009; 46 (5) 633-642
  • 38 Zaveri MS, Conger A, Salter A , et al. Retinal imaging by laser polarimetry and optical coherence tomography evidence of axonal degeneration in multiple sclerosis. Arch Neurol 2008; 65 (7) 924-928
  • 39 Gundogan FC, Demirkaya S, Sobaci G. Is optical coherence tomography really a new biomarker candidate in multiple sclerosis?—A structural and functional evaluation. Invest Ophthalmol Vis Sci 2007; 48 (12) 5773-5781
  • 40 Jeanjean L, Castelnovo G, Carlander B , et al. [Retinal atrophy using optical coherence tomography (OCT) in 15 patients with multiple sclerosis and comparison with healthy subjects]. Rev Neurol (Paris) 2008; 164 (11) 927-934
  • 41 Pueyo V, Ara JR, Almarcegui C , et al. Sub-clinical atrophy of the retinal nerve fibre layer in multiple sclerosis. Acta Ophthalmol (Copenh) 2010; 88 (7) 748-752
  • 42 Talman LS, Bisker ER, Sackel DJ , et al. Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol 2010; 67 (6) 749-760
  • 43 Sepulcre J, Murie-Fernandez M, Salinas-Alaman A, García-Layana A, Bejarano B, Villoslada P. Diagnostic accuracy of retinal abnormalities in predicting disease activity in MS. Neurology 2007; 68 (18) 1488-1494
  • 44 Galetta KM, Calabresi PA, Frohman EM, Balcer LJ. Optical coherence tomography (OCT): imaging the visual pathway as a model for neurodegeneration. Neurotherapeutics 2011; 8 (1) 117-132
  • 45 Bock M, Brandt AU, Kuchenbecker J , et al. Impairment of contrast visual acuity as a functional correlate of retinal nerve fibre layer thinning and total macular volume reduction in multiple sclerosis. Br J Ophthalmol 2012; 96 (1) 62-67
  • 46 Siger M, Dziegielewski K, Jasek L , et al. Optical coherence tomography in multiple sclerosis: thickness of the retinal nerve fiber layer as a potential measure of axonal loss and brain atrophy. J Neurol 2008; 255 (10) 1555-1560
  • 47 Toledo J, Sepulcre J, Salinas-Alaman A , et al. Retinal nerve fiber layer atrophy is associated with physical and cognitive disability in multiple sclerosis. Mult Scler 2008; 14 (7) 906-912
  • 48 Zarbin MA, Jampol LM, Jager RD , et al. Ophthalmic evaluations in clinical studies of fingolimod (FTY720) in multiple sclerosis. Ophthalmology 2013; 120 (7) 1432-1439
  • 49 Nolan R, Gelfand JM, Green AJ. Fingolimod treatment in multiple sclerosis leads to increased macular volume. Neurology 2013; 80 (2) 139-144
  • 50 Gelfand JM, Nolan R, Schwartz DM, Graves J, Green AJ. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain 2012; 135 (Pt 6) 1786-1793
  • 51 Petzold A. Microcystic macular oedema in MS: T2 lesion or black hole?. Lancet Neurol 2012; 11 (11) 933-934
  • 52 Abegg M, Dysli M, Wolf S, Kowal J, Dufour P, Zinkernagel M. Microcystic macular edema: retrograde maculopathy caused by optic neuropathy. Ophthalmology 2014; 121 (1) 142-149
  • 53 Sotirchos ES, Saidha S, Byraiah G , et al. In vivo identification of morphologic retinal abnormalities in neuromyelitis optica. Neurology 2013; 80 (15) 1406-1414
  • 54 Gelfand JM, Cree BA, Nolan R, Arnow S, Green AJ. Microcystic inner nuclear layer abnormalities and neuromyelitis optica. JAMA Neurol 2013; 70 (5) 629-633
  • 55 Saidha S, Sotirchos ES, Ibrahim MA , et al. Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol 2012; 11 (11) 963-972
  • 56 Balk LJ, Killestein J, Polman CH, Uitdehaag BM, Petzold A. Microcystic macular oedema confirmed, but not specific for multiple sclerosis. Brain 2012; 135 (Pt 12) e226 , author reply e227
  • 57 Kisimbi J, Shalchi Z, Mahroo OA , et al. Macular spectral domain optical coherence tomography findings in Tanzanian endemic optic neuropathy. Brain 2013; 136 (Pt 11) 3418-3426
  • 58 Shalchi Z, Mahroo OA, Shunmugam M, Mohamed M, Sullivan PM, Williamson TH. Spectral Domain Optical Coherence Tomography Findings in Long-Term Silicone Oil-Related Visual Loss. Retina 2015; 35 (3) 555-563
  • 59 Wolff B, Azar G, Vasseur V, Sahel JA, Vignal C, Mauget-Faÿsse M. Microcystic changes in the retinal internal nuclear layer associated with optic atrophy: a prospective study. J Ophthalmol 2014; 2014: 395189
  • 60 Tawse KL, Hedges III TR, Gobuty M, Mendoza-Santiesteban C. Optical coherence tomography shows retinal abnormalities associated with optic nerve disease. Br J Ophthalmol 2014; 98 (Suppl. 02) ii30-ii33
  • 61 Burggraaff MC, Trieu J, de Vries-Knoppert WA, Balk L, Petzold A. The clinical spectrum of microcystic macular edema. Invest Ophthalmol Vis Sci 2014; 55 (2) 952-961
  • 62 Kaufhold F, Zimmermann H, Schneider E , et al. Optic neuritis is associated with inner nuclear layer thickening and microcystic macular edema independently of multiple sclerosis. PLoS ONE 2013; 8 (8) e71145
  • 63 Bhargava P, Calabresi PA. The expanding spectrum of aetiologies causing retinal microcystic macular change. Brain 2013; 136 (Pt 11) 3212-3214
  • 64 Gills Jr JP, Wadsworth JAC. Retrograde transsynaptic degeneration of the inner nuclear layer of the retina. Invest Ophthalmol Vis Sci 1967; 6 (4) 437-448
  • 65 Wen JC, Freedman SF, El-Dairi MA, Asrani S. Microcystic Macular Changes in Primary Open-Angle Glaucoma. J Glaucoma 2014;
  • 66 Monteiro ML, Fernandes DB, Apóstolos-Pereira SL, Callegaro D. Quantification of retinal neural loss in patients with neuromyelitis optica and multiple sclerosis with or without optic neuritis using Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53 (7) 3959-3966
  • 67 Naismith RT, Tutlam NT, Xu J , et al. Optical coherence tomography differs in neuromyelitis optica compared with multiple sclerosis. Neurology 2009; 72 (12) 1077-1082
  • 68 Schneider E, Zimmermann H, Oberwahrenbrock T , et al. Optical coherence tomography reveals distinct patterns of retinal damage in neuromyelitis optica and multiple sclerosis. PLoS ONE 2013; 8 (6) e66151
  • 69 Fernandes DB, Raza AS, Nogueira RG , et al. Evaluation of inner retinal layers in patients with multiple sclerosis or neuromyelitis optica using optical coherence tomography. Ophthalmology 2013; 120 (2) 387-394
  • 70 He XF, Liu YT, Peng C, Zhang F, Zhuang S, Zhang JS. Optical coherence tomography assessed retinal nerve fiber layer thickness in patients with Alzheimer's disease: a meta-analysis. Int J Ophthalmol 2012; 5 (3) 401-405
  • 71 Gharbiya M, Trebbastoni A, Parisi F , et al. Choroidal thinning as a new finding in Alzheimer's disease: evidence from enhanced depth imaging spectral domain optical coherence tomography. J Alzheimers Dis 2014; 40 (4) 907-917
  • 72 Marziani E, Pomati S, Ramolfo P , et al. Evaluation of retinal nerve fiber layer and ganglion cell layer thickness in Alzheimer's disease using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2013; 54 (9) 5953-5958
  • 73 Moschos MM, Markopoulos I, Chatziralli I , et al. Structural and functional impairment of the retina and optic nerve in Alzheimer's disease. Curr Alzheimer Res 2012; 9 (7) 782-788
  • 74 Kayabasi U, Sergott RC, Rispoli M. Retinal examination for the diagnosis of Alzheimer's disease. Int J Ophthalmic Pathol 2014; 3 (4)
  • 75 Rohani M, Langroodi AS, Ghourchian S, Falavarjani KG, SoUdi R, Shahidi G. Retinal nerve changes in patients with tremor dominant and akinetic rigid Parkinson's disease. Neurol Sci 2013; 34 (5) 689-693
  • 76 Kirbas S, Turkyilmaz K, Tufekci A, Durmus M. Retinal nerve fiber layer thickness in Parkinson disease. J Neuroophthalmol 2013; 33 (1) 62-65
  • 77 Garcia-Martin E, Rodriguez-Mena D, Satue M , et al. Electrophysiology and optical coherence tomography to evaluate Parkinson disease severity. Invest Ophthalmol Vis Sci 2014; 55 (2) 696-705
  • 78 Sen A, Tugcu B, Coskun C, Ekinci C, Nacaroglu SA. Effects of levodopa on retina in Parkinson disease. Eur J Ophthalmol 2014; 24 (1) 114-119
  • 79 La Morgia C, Barboni P, Rizzo G , et al. Loss of temporal retinal nerve fibers in Parkinson disease: a mitochondrial pattern?. Eur J Neurol 2013; 20 (1) 198-201
  • 80 Satue M, Garcia-Martin E, Fuertes I , et al. Use of Fourier-domain OCT to detect retinal nerve fiber layer degeneration in Parkinson's disease patients. Eye (Lond) 2013; 27 (4) 507-514
  • 81 Moreno-Ramos T, Benito-León J, Villarejo A, Bermejo-Pareja F. Retinal nerve fiber layer thinning in dementia associated with Parkinson's disease, dementia with Lewy bodies, and Alzheimer's disease. J Alzheimers Dis 2013; 34 (3) 659-664
  • 82 Shrier EM, Adam CR, Spund B, Glazman S, Bodis-Wollner I. Interocular asymmetry of foveal thickness in Parkinson disease. J Ophthalmol 2012; 2012: 728457
  • 83 Albrecht P, Müller AK, Südmeyer M , et al. Optical coherence tomography in parkinsonian syndromes. PLoS ONE 2012; 7 (4) e34891
  • 84 Cubo E, Tedejo RP, Rodriguez Mendez V, López Peña MJ, Trejo Gabriel Y Galán JM. Retina thickness in Parkinson's disease and essential tremor. Mov Disord 2010; 25 (14) 2461-2462
  • 85 Lee JY, Kim JM, Ahn J, Kim HJ, Jeon BS, Kim TW. Retinal nerve fiber layer thickness and visual hallucinations in Parkinson's disease. Mov Disord 2014; 29 (1) 61-67
  • 86 Hajee ME, March WF, Lazzaro DR , et al. Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 2009; 127 (6) 737-741
  • 87 Adam CR, Shrier E, Ding Y, Glazman S, Bodis-Wollner I. Correlation of inner retinal thickness evaluated by spectral-domain optical coherence tomography and contrast sensitivity in Parkinson disease. J Neuroophthalmol 2013; 33 (2) 137-142
  • 88 Schneider M, Müller HP, Lauda F , et al. Retinal single-layer analysis in Parkinsonian syndromes: an optical coherence tomography study. J Neural Transm 2014; 121 (1) 41-47
  • 89 Subei AM, Eggenberger ER. Optical coherence tomography: another useful tool in a neuro-ophthalmologist's armamentarium. Curr Opin Ophthalmol 2009; 20 (6) 462-466
  • 90 Mendoza-Santiesteban CE, Gonzalez-Garcia A, Hedges III TR , et al. Optical coherence tomography for neuro-ophthalmologic diagnoses. Semin Ophthalmol 2010; 25 (4) 144-154
  • 91 Danesh-Meyer HV, Papchenko T, Savino PJ, Law A, Evans J, Gamble GD. In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Invest Ophthalmol Vis Sci 2008; 49 (5) 1879-1885
  • 92 Chan CK, Miller NR. Peripapillary nerve fiber layer thickness measured by optical coherence tomography in patients with no light perception from long-standing nonglaucomatous optic neuropathies. J Neuroophthalmol 2007; 27 (3) 176-179
  • 93 Salgarello T, Falsini B, Tedesco S, Galan ME, Colotto A, Scullica L. Correlation of optic nerve head tomography with visual field sensitivity in papilledema. Invest Ophthalmol Vis Sci 2001; 42 (7) 1487-1494
  • 94 Rebolleda G, Muñoz-Negrete FJ. Follow-up of mild papilledema in idiopathic intracranial hypertension with optical coherence tomography. Invest Ophthalmol Vis Sci 2009; 50 (11) 5197-5200
  • 95 Scott CJ, Kardon RH, Lee AG, Frisén L, Wall M. Diagnosis and grading of papilledema in patients with raised intracranial pressure using optical coherence tomography vs clinical expert assessment using a clinical staging scale. Arch Ophthalmol 2010; 128 (6) 705-711
  • 96 Wall M, Kupersmith MJ, Kieburtz KD , et al; NORDIC Idiopathic Intracranial Hypertension Study Group. The idiopathic intracranial hypertension treatment trial: clinical profile at baseline. JAMA Neurol 2014; 71 (6) 693-701
  • 97 Skau M, Yri H, Sander B, Gerds TA, Milea D, Jensen R. Diagnostic value of optical coherence tomography for intracranial pressure in idiopathic intracranial hypertension. Graefes Arch Clin Exp Ophthalmol 2013; 251 (2) 567-574
  • 98 Chan CK, Cheng AC, Leung CK , et al. Quantitative assessment of optic nerve head morphology and retinal nerve fibre layer in non-arteritic anterior ischaemic optic neuropathy with optical coherence tomography and confocal scanning laser ophthalmoloscopy. Br J Ophthalmol 2009; 93 (6) 731-735
  • 99 Hedges III TR, Vuong LN, Gonzalez-Garcia AO, Mendoza-Santiesteban CE, Amaro-Quierza ML. Subretinal fluid from anterior ischemic optic neuropathy demonstrated by optical coherence tomography. Arch Ophthalmol 2008; 126 (6) 812-815
  • 100 Danesh-Meyer HV, Boland MV, Savino PJ , et al. Optic disc morphology in open-angle glaucoma compared with anterior ischemic optic neuropathies. Invest Ophthalmol Vis Sci 2010; 51 (4) 2003-2010
  • 101 Saito H, Tomidokoro A, Tomita G, Araie M, Wakakura M. Optic disc and peripapillary morphology in unilateral nonarteritic anterior ischemic optic neuropathy and age- and refraction-matched normals. Ophthalmol 2008; 115 (9) 1585-1590
  • 102 Contreras I, Noval S, Rebolleda G, Muñoz-Negrete FJ. Follow-up of nonarteritic anterior ischemic optic neuropathy with optical coherence tomography. Ophthalmology 2007; 114 (12) 2338-2344
  • 103 Kernstock C, Beisse F, Wiethoff S , et al. Assessment of functional and morphometric endpoints in patients with non-arteritic anterior ischemic optic neuropathy (NAION). Graefes Arch Clin Exp Ophthalmol 2014; 252 (3) 515-521
  • 104 Dotan G, Goldstein M, Kesler A, Skarf B. Long-term retinal nerve fiber layer changes following nonarteritic anterior ischemic optic neuropathy. Clin Ophthalmol 2013; 7: 735-740
  • 105 Karam EZ, Hedges TR. Optical coherence tomography of the retinal nerve fibre layer in mild papilloedema and pseudopapilloedema. Br J Ophthalmol 2005; 89 (3) 294-298
  • 106 Silverman AL, Tatham AJ, Medeiros FA, Weinreb RN. Assessment of optic nerve head drusen using enhanced depth imaging and swept source optical coherence tomography. J Neuroophthalmol 2014; 34 (2) 198-205
  • 107 Gili P, Flores-Rodríguez P, Martin-Ríos MD, Carrasco Font C. Anatomical and functional impairment of the nerve fiber layer in patients with optic nerve head drusen. Graefes Arch Clin Exp Ophthalmol 2013; 251 (10) 2421-2428
  • 108 Noval S, Visa J, Contreras I. Visual field defects due to optic disk drusen in children. Graefes Arch Clin Exp Ophthalmol 2013; 251 (10) 2445-2450
  • 109 Roh S, Noecker RJ, Schuman JS, Hedges III TR, Weiter JJ, Mattox C. Effect of optic nerve head drusen on nerve fiber layer thickness. Ophthalmology 1998; 105 (5) 878-885
  • 110 Casado A, Rebolleda G, Guerrero L , et al. Measurement of retinal nerve fiber layer and macular ganglion cell-inner plexiform layer with spectral-domain optical coherence tomography in patients with optic nerve head drusen. Graefes Arch Clin Exp Ophthalmol 2014; 252 (10) 1653-1660
  • 111 Dotan G, Goldenberg D, Kesler A, Naftaliev E, Loewenstein A, Goldstein M. The use of spectral-domain optical coherence tomography for differentiating long-standing central retinal artery occlusion and nonarteritic anterior ischemic optic neuropathy. Ophthalmic Surg Lasers Imaging Retina 2014; 45 (1) 38-44