Semin Thromb Hemost 2016; 42(01): 009-017
DOI: 10.1055/s-0035-1564838
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Keeping von Willebrand Factor under Control: Alternatives for ADAMTS13

Claudia Tersteeg
1   Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
,
Rob Fijnheer
2   Laboratory of Clinical Chemistry and Hematology, UMC Utrecht, Utrecht, The Netherlands
,
Gerard Pasterkamp
2   Laboratory of Clinical Chemistry and Hematology, UMC Utrecht, Utrecht, The Netherlands
,
Philip G. de Groot
2   Laboratory of Clinical Chemistry and Hematology, UMC Utrecht, Utrecht, The Netherlands
,
Karen Vanhoorelbeke
1   Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
,
Steven de Maat
2   Laboratory of Clinical Chemistry and Hematology, UMC Utrecht, Utrecht, The Netherlands
,
Coen Maas
2   Laboratory of Clinical Chemistry and Hematology, UMC Utrecht, Utrecht, The Netherlands
› Author Affiliations
Further Information

Publication History

Publication Date:
23 November 2015 (online)

Abstract

Von Willebrand factor (VWF) is one of the most important proteins of the hemostatic system. Its multimeric state is essential for its natural function to guide platelets to sites of injury. ADAMTS13 is the key protease that regulates the multimeric state of VWF. Without ADAMTS13, VWF multimers can grow to pathologically large sizes. This is a risk factor for the life-threatening condition thrombotic thrombocytopenic purpura (TTP). In this condition, VWF-rich thrombi occlude the microvasculature of various tissues. Intriguingly, a complete ADAMTS13 deficiency does not cause continuous TTP, either in patients or genetically targeted mice. Instead, TTP occurs in episodes of disease, separated by extended periods of remission. This indicates that regulating factors beyond ADAMTS13 are likely involved in this pathologic cascade of events. This raises the question of what really happens when ADAMTS13 is (temporarily) unavailable. In this review, we explore the possible role of complementary mechanisms that are capable of modifying the thrombogenic potential of VWF.

 
  • References

  • 1 Springer TA. von Willebrand factor, Jedi knight of the bloodstream. Blood 2014; 124 (9) 1412-1425
  • 2 George JN, Nester CM. Syndromes of thrombotic microangiopathy. N Engl J Med 2014; 371 (19) 1847-1848
  • 3 Furlan M, Robles R, Lämmle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood 1996; 87 (10) 4223-4234
  • 4 Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood 1996; 87 (10) 4235-4244
  • 5 Gerritsen HE, Robles R, Lämmle B, Furlan M. Partial amino acid sequence of purified von Willebrand factor-cleaving protease. Blood 2001; 98 (6) 1654-1661
  • 6 Fujikawa K, Suzuki H, McMullen B, Chung D. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood 2001; 98 (6) 1662-1666
  • 7 Crawley JTB, de Groot R, Xiang Y, Luken BM, Lane DA. Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor. Blood 2011; 118 (12) 3212-3221
  • 8 Tersteeg C, Schiviz A, De Meyer SF , et al. Potential for recombinant ADAMTS13 as an effective therapy for acquired thrombotic thrombocytopenic purpura. Arterioscler Thromb Vasc Biol 2015; ; DOI: ATVBAHA.115.306014.
  • 9 Schiviz A, Wuersch K, Piskernik C , et al. A new mouse model mimicking thrombotic thrombocytopenic purpura: correction of symptoms by recombinant human ADAMTS13. Blood 2012; 119 (25) 6128-6135
  • 10 Jian C, Xiao J, Gong L , et al. Gain-of-function ADAMTS13 variants that are resistant to autoantibodies against ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura. Blood 2012; 119 (16) 3836-3843
  • 11 Li GW, Rambally S, Kamboj J , et al. Treatment of refractory thrombotic thrombocytopenic purpura with N-acetylcysteine: a case report. Transfusion 2014; 54 (5) 1221-1224
  • 12 Shortt J, Opat SS, Wood EM. N-Acetylcysteine for thrombotic thrombocytopenic purpura: is a von Willebrand factor-inhibitory dose feasible in vivo?. Transfusion 2014; 54 (9) 2362-2363
  • 13 Callewaert F, Roodt J, Ulrichts H , et al. Evaluation of efficacy and safety of the anti-VWF Nanobody ALX-0681 in a preclinical baboon model of acquired thrombotic thrombocytopenic purpura. Blood 2012; 120 (17) 3603-3610
  • 14 Feys HB, Roodt J, Vandeputte N , et al. Inhibition of von Willebrand factor-platelet glycoprotein Ib interaction prevents and reverses symptoms of acute acquired thrombotic thrombocytopenic purpura in baboons. Blood 2012; 120 (17) 3611-3614
  • 15 Holz JB. The TITAN trial—assessing the efficacy and safety of an anti-von Willebrand factor nanobody in patients with acquired thrombotic thrombocytopenic purpura. Transfus Apheresis Sci 2012; 46 (3) 343-346
  • 16 Peyvandi F, Scully M, Knobl P , et al. Additional data from the titan trial with the anti-VWF nanobody caplacizumab in the treatment of acquired TTP. J Thromb Haemost 2015; 13 (2) LB006
  • 17 Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med 1998; 339 (22) 1585-1594
  • 18 Rieger M, Mannucci PM, Kremer Hovinga JA , et al. ADAMTS13 autoantibodies in patients with thrombotic microangiopathies and other immunomediated diseases. Blood 2005; 106 (4) 1262-1267
  • 19 Lotta LA, Wu HM, Mackie IJ , et al. Residual plasmatic activity of ADAMTS13 is correlated with phenotype severity in congenital thrombotic thrombocytopenic purpura. Blood 2012; 120 (2) 440-448
  • 20 Furlan M, Lämmle B. Aetiology and pathogenesis of thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome: the role of von Willebrand factor-cleaving protease. Best Pract Res Clin Haematol 2001; 14 (2) 437-454
  • 21 Kremer Hovinga JA, Vesely SK, Terrell DR, Lämmle B, George JN. Survival and relapse in patients with thrombotic thrombocytopenic purpura. Blood 2010; 115 (8) 1500-1511 , quiz 1662
  • 22 Peyvandi F, Lavoretano S, Palla R , et al. ADAMTS13 and anti-ADAMTS13 antibodies as markers for recurrence of acquired thrombotic thrombocytopenic purpura during remission. Haematologica 2008; 93 (2) 232-239
  • 23 Motto DG, Chauhan AK, Zhu G , et al. Shigatoxin triggers thrombotic thrombocytopenic purpura in genetically susceptible ADAMTS13-deficient mice. J Clin Invest 2005; 115 (10) 2752-2761
  • 24 Picard C, Burtey S, Bornet C, Curti C, Montana M, Vanelle P. Pathophysiology and treatment of typical and atypical hemolytic uremic syndrome. Pathol Biol (Paris) 2015; 63 (3) 136-143
  • 25 Tsai HM. Pathophysiology of thrombotic thrombocytopenic purpura. Int J Hematol 2010; 91 (1) 1-19
  • 26 Fuchs TA, Kremer Hovinga JA, Schatzberg D, Wagner DD, Lämmle B. Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood 2012; 120 (6) 1157-1164
  • 27 Brinkmann V, Reichard U, Goosmann C , et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663) 1532-1535
  • 28 Clark SR, Ma AC, Tavener SA , et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13 (4) 463-469
  • 29 Fuchs TA, Brill A, Wagner DD. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol 2012; 32 (8) 1777-1783
  • 30 Demers M, Krause DS, Schatzberg D , et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A 2012; 109 (32) 13076-13081
  • 31 Thomas GM, Carbo C, Curtis BR , et al. Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice. Blood 2012; 119 (26) 6335-6343
  • 32 Chen G, Zhang D, Fuchs TA, Manwani D, Wagner DD, Frenette PS. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood 2014; 123 (24) 3818-3827
  • 33 Borissoff JI, Joosen IA, Versteylen MO , et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol 2013; 33 (8) 2032-2040
  • 34 Fuchs TA, Alvarez JJ, Martinod K, Bhandari AA, Kaufman RM, Wagner DD. Neutrophils release extracellular DNA traps during storage of red blood cell units. Transfusion 2013; 53 (12) 3210-3216
  • 35 von Brühl ML, Stark K, Steinhart A , et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (4) 819-835
  • 36 Maga TK, Nishimura CJ, Weaver AE, Frees KL, Smith RJ. Mutations in alternative pathway complement proteins in American patients with atypical hemolytic uremic syndrome. Hum Mutat 2010; 31 (6) E1445-E1460
  • 37 Zipfel PF, Edey M, Heinen S , et al. Deletion of complement factor H-related genes CFHR1 and CFHR3 is associated with atypical hemolytic uremic syndrome. PLoS Genet 2007; 3 (3) e41
  • 38 Turner N, Nolasco L, Nolasco J, Sartain S, Moake J. Thrombotic microangiopathies and the linkage between von Willebrand factor and the alternative complement pathway. Semin Thromb Hemost 2014; 40 (5) 544-550
  • 39 Feng S, Liang X, Cruz MA , et al. The interaction between factor H and von Willebrand factor. PLoS ONE 2013; 8 (8) e73715
  • 40 Rayes J, Roumenina LT, Dimitrov JD , et al. The interaction between factor H and VWF increases factor H cofactor activity and regulates VWF prothrombotic status. Blood 2014; 123 (1) 121-125
  • 41 Nolasco L, Nolasco J, Feng S, Afshar-Kharghan V, Moake J. Human complement factor H is a reductase for large soluble von Willebrand factor multimers—brief report. Arterioscler Thromb Vasc Biol 2013; 33 (11) 2524-2528
  • 42 Wohner N, Kovács A, Machovich R, Kolev K. Modulation of the von Willebrand factor-dependent platelet adhesion through alternative proteolytic pathways. Thromb Res 2012; 129 (4) e41-e46
  • 43 Raife TJ, Cao W, Atkinson BS , et al. Leukocyte proteases cleave von Willebrand factor at or near the ADAMTS13 cleavage site. Blood 2009; 114 (8) 1666-1674
  • 44 Hollestelle MJ, Sprong T, Bovenschen N , et al. von Willebrand factor activation, granzyme-B and thrombocytopenia in meningococcal disease. J Thromb Haemost 2010; 8 (5) 1098-1106
  • 45 Kokame K, Nobe Y, Kokubo Y, Okayama A, Miyata T. FRETS-VWF73, a first fluorogenic substrate for ADAMTS13 assay. Br J Haematol 2005; 129 (1) 93-100
  • 46 Mikes B, Sinkovits G, Farkas P , et al. Elevated plasma neutrophil elastase concentration is associated with disease activity in patients with thrombotic thrombocytopenic purpura. Thromb Res 2014; 133 (4) 616-621
  • 47 Budde U, Schneppenheim R. Interactions of von Willebrand factor and ADAMTS13 in von Willebrand disease and thrombotic thrombocytopenic purpura. Hamostaseologie 2014; 34 (3) 215-225
  • 48 Buzza MS, Dyson JM, Choi H , et al. Antihemostatic activity of human granzyme B mediated by cleavage of von Willebrand factor. J Biol Chem 2008; 283 (33) 22498-22504
  • 49 Hollestelle MJ, Lai KW, van Deuren M , et al. Cleavage of von Willebrand factor by granzyme M destroys its factor VIII binding capacity. PLoS ONE 2011; 6 (9) e24216
  • 50 Wensink AC, Hack CE, Bovenschen N. Granzymes regulate proinflammatory cytokine responses. J Immunol 2015; 194 (2) 491-497
  • 51 Chandler WL, Jelacic S, Boster DR , et al. Prothrombotic coagulation abnormalities preceding the hemolytic-uremic syndrome. N Engl J Med 2002; 346 (1) 23-32
  • 52 Monteagudo J, Pereira A, Reverter JC , et al. Thrombin generation and fibrinolysis in the thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. Thromb Haemost 1991; 66 (5) 515-519
  • 53 Raife T, Friedman KD, Fenwick B. Lepirudin prevents lethal effects of Shiga toxin in a canine model. Thromb Haemost 2004; 92 (2) 387-393
  • 54 Wada H, Mori Y, Shimura M , et al. Poor outcome in disseminated intravascular coagulation or thrombotic thrombocytopenic purpura patients with severe vascular endothelial cell injuries. Am J Hematol 1998; 58 (3) 189-194
  • 55 Sagripanti A, Carpi A, Baicchi U , et al. Plasmatic parameters of coagulation activation in thrombotic microangiopathy. Biomed Pharmacother 1996; 50 (8) 357-362
  • 56 Takahashi H, Tatewaki W, Wada K, Shibata A. Thrombin generation in patients with thrombotic thrombocytopenic purpura. Am J Hematol 1989; 32 (4) 255-257
  • 57 Hoylaerts M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem 1982; 257 (6) 2912-2919
  • 58 Ellis V, Behrendt N, Danø K. Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor. J Biol Chem 1991; 266 (19) 12752-12758
  • 59 Miles LA, Parmer RJ. Plasminogen receptors: the first quarter century. Semin Thromb Hemost 2013; 39 (4) 329-337
  • 60 Hamilton KK, Fretto LJ, Grierson DS, McKee PA. Effects of plasmin on von Willebrand factor multimers. Degradation in vitro and stimulation of release in vivo. J Clin Invest 1985; 76 (1) 261-270
  • 61 Federici AB, Berkowitz SD, Zimmerman TS, Mannucci PM. Proteolysis of von Willebrand factor after thrombolytic therapy in patients with acute myocardial infarction. Blood 1992; 79 (1) 38-44
  • 62 Feys HB, Vandeputte N, Palla R , et al. Inactivation of ADAMTS13 by plasmin as a potential cause of thrombotic thrombocytopenic purpura. J Thromb Haemost 2010; 8 (9) 2053-2062
  • 63 Crawley JTB, Lam JK, Rance JB, Mollica LR, O'Donnell JS, Lane DA. Proteolytic inactivation of ADAMTS13 by thrombin and plasmin. Blood 2005; 105 (3) 1085-1093
  • 64 Tersteeg C, de Maat S, De Meyer SF , et al. Plasmin cleavage of von Willebrand factor as an emergency bypass for ADAMTS13 deficiency in thrombotic microangiopathy. Circulation 2014; 129 (12) 1320-1331
  • 65 Kakishita E, Koyama T, Higuchi M, Kunitomi O, Oura Y, Nagai K. Fibrinogenolysis in thrombotic thrombocytopenic purpura. Am J Hematol 1989; 32 (1) 14-19
  • 66 Hoirisch-Clapauch S, Nardi AE. A role for tissue plasminogen activator in thrombotic thrombocytopenic purpura. Med Hypotheses 2014; 83 (6) 747-750
  • 67 Kroon ME, Koolwijk P, van der Vecht B, van Hinsbergh VW. Urokinase receptor expression on human microvascular endothelial cells is increased by hypoxia: implications for capillary-like tube formation in a fibrin matrix. Blood 2000; 96 (8) 2775-2783
  • 68 Graham CH, Fitzpatrick TE, McCrae KR. Hypoxia stimulates urokinase receptor expression through a heme protein-dependent pathway. Blood 1998; 91 (9) 3300-3307
  • 69 Xu Y, Hagege J, Mougenot B, Sraer JD, Rønne E, Rondeau E. Different expression of the plasminogen activation system in renal thrombotic microangiopathy and the normal human kidney. Kidney Int 1996; 50 (6) 2011-2019
  • 70 Bu F, Maga T, Meyer NC , et al. Comprehensive genetic analysis of complement and coagulation genes in atypical hemolytic uremic syndrome. J Am Soc Nephrol 2014; 25 (1) 55-64
  • 71 Hugenholtz GCG, Lisman T. Letter by Hugenholtz and Lisman regarding article, “plasmin cleavage of von Willebrand factor as an emergency bypass for ADAMTS13 deficiency in thrombotic microangiopathy.”. Circulation 2015; 131 (2) e18
  • 72 Sinnaeve PR, Armstrong PW, Gershlick AH , et al; STREAM investigators. ST-segment-elevation myocardial infarction patients randomized to a pharmaco-invasive strategy or primary percutaneous coronary intervention: Strategic Reperfusion Early After Myocardial Infarction (STREAM) 1-year mortality follow-up. Circulation 2014; 130 (14) 1139-1145
  • 73 Vandelli L, Marietta M, Gambini M , et al. Fibrinogen decrease after intravenous thrombolysis in ischemic stroke patients is a risk factor for intracerebral hemorrhage. J Stroke Cerebrovasc Dis 2015; 24 (2) 394-400
  • 74 Vesconi S, Langer M, Rossi E, Donati MB. Urokinase treatment for severe neurological complications in a patient with thrombotic thrombocytopenic purpura. Haemostasis 1981; 10 (5) 289-295
  • 75 Wang X, Palasubramaniam J, Gkanatsas Y , et al. Towards effective and safe thrombolysis and thromboprophylaxis: preclinical testing of a novel antibody-targeted recombinant plasminogen activator directed against activated platelets. Circ Res 2014; 114 (7) 1083-1093