Semin Liver Dis 2016; 36(01): 027-036
DOI: 10.1055/s-0035-1571272
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Targeting Cell Death and Sterile Inflammation Loop for the Treatment of Nonalcoholic Steatohepatitis

Alexander Wree
1   Department of Pediatrics, University of California San Diego (UCSD), and Rady Children's Hospital, San Diego, California
2   Department of Internal Medicine III, University Hospital, RWTH-Aachen, Germany
,
Wajahat Z. Mehal
3   Yale University, and West Haven Veterans Medical Center, New Haven, Connecticut
,
Ariel E. Feldstein
1   Department of Pediatrics, University of California San Diego (UCSD), and Rady Children's Hospital, San Diego, California
› Author Affiliations
Further Information

Publication History

Publication Date:
12 February 2016 (online)

Abstract

Nonalcoholic fatty liver disease represents a wide spectrum of conditions and is currently the most common form of chronic liver disease affecting both adults and children in the United States and many other parts of the world. Great effort has been focused on the development of novel therapies for those patients with the more advanced forms of the disease, in particular those with nonalcoholic steatohepatitis (NASH) and liver fibrosis that can be associated with significant morbidity and mortality. In this review, the authors focus on the role of cell death and sterile inflammatory pathways as well as the self-perpetuating deleterious cycle they may trigger as novel therapeutic targets for the treatment of fibrotic NASH.

 
  • References

  • 1 Levene AP, Goldin RD. The epidemiology, pathogenesis and histopathology of fatty liver disease. Histopathology 2012; 61 (2) 141-152
  • 2 Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 2011; 34 (3) 274-285
  • 3 Brunt EM, Neuschwander-Tetri BA, Oliver D, Wehmeier KR, Bacon BR. Nonalcoholic steatohepatitis: histologic features and clinical correlations with 30 blinded biopsy specimens. Hum Pathol 2004; 35 (9) 1070-1082
  • 4 Adams LA, Lymp JF, St Sauver J , et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 2005; 129 (1) 113-121
  • 5 Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 1999; 116 (6) 1413-1419
  • 6 Angulo P, Kleiner DE, Dam-Larsen S , et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 2015; 149 (2) 389-97.e10
  • 7 Wong RJ, Aguilar M, Cheung R , et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 2015; 148 (3) 547-555
  • 8 Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 2010; 52 (5) 1836-1846
  • 9 Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol 2012; 56 (4) 952-964
  • 10 Wree A, Kahraman A, Gerken G, Canbay A. Obesity affects the liver - the link between adipocytes and hepatocytes. Digestion 2011; 83 (1–2) 124-133
  • 11 Feldstein AE. Novel insights into the pathophysiology of nonalcoholic fatty liver disease. Semin Liver Dis 2010; 30 (4) 391-401
  • 12 Wree A, Broderick L, Canbay A, Hoffman HM, Feldstein AE. From NAFLD to NASH to cirrhosis-new insights into disease mechanisms. Nat Rev Gastroenterol Hepatol 2013; 10 (11) 627-636
  • 13 Feldstein AE, Canbay A, Angulo P , et al. Hepatocyte apoptosis and Fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 2003; 125 (2) 437-443
  • 14 Hirsova P, Gores GJ. Death receptor-mediated cell death and proinflammatory signaling in nonalcoholic steatohepatitis. Cell Mol Gastroenterol Hepatol 2015; 1 (1) 17-27
  • 15 Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 2014; 147 (4) 765-783.e4
  • 16 Canbay A, Friedman S, Gores GJ. Apoptosis: the nexus of liver injury and fibrosis. Hepatology 2004; 39 (2) 273-278
  • 17 Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores GJ. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest 2003; 83 (5) 655-663
  • 18 Kroemer G, Galluzzi L, Vandenabeele P , et al; Nomenclature Committee on Cell Death 2009. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 2009; 16 (1) 3-11
  • 19 Komatsu M. Liver autophagy: physiology and pathology. J Biochem 2012; 152 (1) 5-15
  • 20 Wree A, Eguchi A, McGeough MD , et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 2014; 59 (3) 898-910
  • 21 Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 2004; 5 (11) 897-907
  • 22 Malhi H, Guicciardi ME, Gores GJ. Hepatocyte death: a clear and present danger. Physiol Rev 2010; 90 (3) 1165-1194
  • 23 Rasola A, Bernardi P. The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 2007; 12 (5) 815-833
  • 24 Hotchkiss RS, Strasser A, McDunn JE, Swanson PE. Cell death. N Engl J Med 2009; 361 (16) 1570-1583
  • 25 Gores GJ, Herman B, Lemasters JJ. Plasma membrane bleb formation and rupture: a common feature of hepatocellular injury. Hepatology 1990; 11 (4) 690-698
  • 26 Holler N, Zaru R, Micheau O , et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 2000; 1 (6) 489-495
  • 27 Galluzzi L, Kepp O, Kroemer G. RIP kinases initiate programmed necrosis. J Mol Cell Biol 2009; 1 (1) 8-10
  • 28 Eguchi A, Wree A, Feldstein AE. Biomarkers of liver cell death. J Hepatol 2014; 60 (5) 1063-1074
  • 29 Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 2006; 8 (11) 1812-1825
  • 30 Canbay A, Feldstein A, Baskin-Bey E, Bronk SF, Gores GJ. The caspase inhibitor IDN-6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J Pharmacol Exp Ther 2004; 308 (3) 1191-1196
  • 31 Holsinger LJ, Coakley DF, Dener JM , et al. Efficacy of a reversible cathepsin B inhibitor in a rodent model of liver fibrosis and human pharmacokinetic profile. Hepatology 2010; 52: 1128A
  • 32 Wu X, Zhang L, Gurley E , et al. Prevention of free fatty acid-induced hepatic lipotoxicity by 18beta-glycyrrhetinic acid through lysosomal and mitochondrial pathways. Hepatology 2008; 47 (6) 1905-1915
  • 33 Adams LA, Zein CO, Angulo P, Lindor KD. A pilot trial of pentoxifylline in nonalcoholic steatohepatitis. Am J Gastroenterol 2004; 99 (12) 2365-2368
  • 34 Satapathy SK, Sakhuja P, Malhotra V, Sharma BC, Sarin SK. Beneficial effects of pentoxifylline on hepatic steatosis, fibrosis and necroinflammation in patients with non-alcoholic steatohepatitis. J Gastroenterol Hepatol 2007; 22 (5) 634-638
  • 35 Gogate P, Ambardekar P, Kulkarni S, Deshpande R, Joshi S, Deshpande M. Comparison of endothelial cell loss after cataract surgery: phacoemulsification versus manual small-incision cataract surgery: six-week results of a randomized control trial. J Cataract Refract Surg 2010; 36 (2) 247-253
  • 36 Boetticher NC, Peine CJ, Kwo P , et al. A randomized, double-blinded, placebo-controlled multicenter trial of etanercept in the treatment of alcoholic hepatitis. Gastroenterology 2008; 135 (6) 1953-1960
  • 37 Zou C, Ma J, Wang X , et al. Lack of Fas antagonism by Met in human fatty liver disease. Nat Med 2007; 13 (9) 1078-1085
  • 38 Valentino KL, Gutierrez M, Sanchez R, Winship MJ, Shapiro DA. First clinical trial of a novel caspase inhibitor: anti-apoptotic caspase inhibitor, IDN-6556, improves liver enzymes. Int J Clin Pharmacol Ther 2003; 41 (10) 441-449
  • 39 Dixon LJ, Berk M, Thapaliya S, Papouchado BG, Feldstein AE. Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis. Lab Invest 2012; 92 (5) 713-723
  • 40 Witek RP, Stone WC, Karaca FG , et al. Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology 2009; 50 (5) 1421-1430
  • 41 Anstee QM, Concas D, Kudo H , et al. Impact of pan-caspase inhibition in animal models of established steatosis and non-alcoholic steatohepatitis. J Hepatol 2010; 53 (3) 542-550
  • 42 Pockros PJ, Schiff ER, Shiffman ML , et al. Oral IDN-6556, an antiapoptotic caspase inhibitor, may lower aminotransferase activity in patients with chronic hepatitis C. Hepatology 2007; 46 (2) 324-329
  • 43 Shiffman ML, Pockros P, McHutchison JG, Schiff ER, Morris M, Burgess G. Clinical trial: the efficacy and safety of oral PF-03491390, a pancaspase inhibitor - a randomized placebo-controlled study in patients with chronic hepatitis C. Aliment Pharmacol Ther 2010; 31 (9) 969-978
  • 44 Barreyro FJ, Holod S, Finocchietto PV , et al. The pan-caspase inhibitor Emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int 2015; 35 (3) 953-966
  • 45 Ratziu V, Sheikh MY, Sanyal AJ , et al. A phase 2, randomized, double-blind, placebo-controlled study of GS-9450 in subjects with nonalcoholic steatohepatitis. Hepatology 2012; 55 (2) 419-428
  • 46 Elbekai RH, Paranjpe MG, Contreras PC, Spada A. Carcinogenicity assessment of the pan-caspase inhibitor, Emricasan, in Tg.rasH2 mice. Regul Toxicol Pharmacol 2015; 72 (2) 169-178
  • 47 Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001; 81 (2) 807-869
  • 48 Wang Y, Singh R, Lefkowitch JH, Rigoli RM, Czaja MJ. Tumor necrosis factor-induced toxic liver injury results from JNK2-dependent activation of caspase-8 and the mitochondrial death pathway. J Biol Chem 2006; 281 (22) 15258-15267
  • 49 Kohl T, Gehrke N, Schad A , et al. Diabetic liver injury from streptozotocin is regulated through the caspase-8 homolog cFLIP involving activation of JNK2 and intrahepatic immunocompetent cells. Cell Death Dis 2013; 4: e712
  • 50 Gan LT, Van Rooyen DM, Koina ME, McCuskey RS, Teoh NC, Farrell GC. Hepatocyte free cholesterol lipotoxicity results from JNK1-mediated mitochondrial injury and is HMGB1 and TLR4-dependent. J Hepatol 2014; 61 (6) 1376-1384
  • 51 Kim KY, Kim BC, Xu Z, Kim SJ. Mixed lineage kinase 3 (MLK3)-activated p38 MAP kinase mediates transforming growth factor-beta-induced apoptosis in hepatoma cells. J Biol Chem 2004; 279 (28) 29478-29484
  • 52 Sharma M, Urano F, Jaeschke A. Cdc42 and Rac1 are major contributors to the saturated fatty acid-stimulated JNK pathway in hepatocytes. J Hepatol 2012; 56 (1) 192-198
  • 53 Ibrahim SH, Gores GJ, Hirsova P , et al. Mixed lineage kinase 3 deficient mice are protected against the high fat high carbohydrate diet-induced steatohepatitis. Liver Int 2014; 34 (3) 427-437
  • 54 Jiang JX, Török NJ. MLK3 as a regulator of disease progression in non-alcoholic steatohepatitis. Liver Int 2014; 34 (8) 1131-1132
  • 55 Ichijo H, Nishida E, Irie K , et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 1997; 275 (5296) 90-94
  • 56 Matsuzawa A, Ichijo H. Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta 2008; 1780 (11) 1325-1336
  • 57 Yamamoto E, Dong YF, Kataoka K , et al. Olmesartan prevents cardiovascular injury and hepatic steatosis in obesity and diabetes, accompanied by apoptosis signal regulating kinase-1 inhibition. Hypertension 2008; 52 (3) 573-580
  • 58 Nakagawa H, Maeda S, Hikiba Y , et al. Deletion of apoptosis signal-regulating kinase 1 attenuates acetaminophen-induced liver injury by inhibiting c-Jun N-terminal kinase activation. Gastroenterology 2008; 135 (4) 1311-1321
  • 59 Lim PL, Liu J, Go ML, Boelsterli UA. The mitochondrial superoxide/thioredoxin-2/Ask1 signaling pathway is critically involved in troglitazone-induced cell injury to human hepatocytes. Toxicol Sci 2008; 101 (2) 341-349
  • 60 Lin JH, Zhang JJ, Lin SL, Chertow GM. Design of a phase 2 clinical trial of an ASK1 inhibitor, GS-4997, in patients with diabetic kidney disease. Nephron 2015; 129 (1) 29-33
  • 61 Gilead S. A phase 2, dose-ranging, randomized, double-blind, placebo-controlled study of GS-4997 in subjects with pulmonary arterial hypertension. ClinicalTrials.gov I.D. #NCT02234141. Bethesda, MD: National Institutes of Health
  • 62 Gilead S. A phase 2 double-blind, placebo-controlled, dose-ranging study evaluating the efficacy, safety, and tolerability of GS-4997 in subjects with diabetic kidney disease. ClinicalTrials.gov I.D. #NCT02177786. Bethesda, MD: National Institutes of Health
  • 63 Gilead S. A phase 2, randomized, open label study evaluating the safety, tolerability, and efficacy of GS-4997 alone or in combination with simtuzumab (sim) in subjects with nonalcoholic steatohepatitis (NASH) and fibrosis stages F2–F3. ClinicalTrials.gov I.D. #NCT02466516. Bethesda, MD: National Institutes of Health
  • 64 Zhang D, Lin Han J. Receptor-interacting protein (RIP) kinase family. Cell Mol Immunol 2010; 7 (4) 243-249
  • 65 Zhang YF, He W, Zhang C , et al. Role of receptor interacting protein (RIP)1 on apoptosis-inducing factor-mediated necroptosis during acetaminophen-evoked acute liver failure in mice. Toxicol Lett 2014; 225 (3) 445-453
  • 66 Takemoto K, Hatano E, Iwaisako K , et al. Necrostatin-1 protects against reactive oxygen species (ROS)-induced hepatotoxicity in acetaminophen-induced acute liver failure. FEBS Open Bio 2014; 4: 777-787
  • 67 Li JX, Feng JM, Wang Y , et al. The B-Raf(V600E) inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury. Cell Death Dis 2014; 5: e1278
  • 68 Gautheron J, Vucur M, Reisinger F , et al. A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis. EMBO Mol Med 2014; 6 (8) 1062-1074
  • 69 Mandal P, Berger SB, Pillay S , et al. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell 2014; 56 (4) 481-495
  • 70 Deutsch M, Graffeo CS, Rokosh R , et al. Divergent effects of RIP1 or RIP3 blockade in murine models of acute liver injury. Cell Death Dis 2015; 6: e1759
  • 71 Garcia-Martinez I, Mehal WZ. DNA: adding injury to insult. Hepatology 2015; 61 (1) 35-36
  • 72 Garcia-Martinez I, Shaker ME, Mehal WZ. Therapeutic opportunities in damage-associated molecular pattern-driven metabolic diseases. Antioxid Redox Signal 2015;
  • 73 Mehal WZ. Cells on fire. Sci Am 2015; 312 (6) 44-49
  • 74 Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418 (6894) 191-195
  • 75 Huttunen HJ, Fages C, Rauvala H. Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem 1999; 274 (28) 19919-19924
  • 76 Yang H, Hreggvidsdottir HS, Palmblad K , et al. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci U S A 2010; 107 (26) 11942-11947
  • 77 Chen GY, Tang J, Zheng P, Liu Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 2009; 323 (5922) 1722-1725
  • 78 Venereau E, Casalgrandi M, Schiraldi M , et al. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med 2012; 209 (9) 1519-1528
  • 79 Tsung A, Sahai R, Tanaka H , et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 2005; 201 (7) 1135-1143
  • 80 McGill MR, Staggs VS, Sharpe MR, Lee WM, Jaeschke H ; Acute Liver Failure Study Group. Serum mitochondrial biomarkers and damage-associated molecular patterns are higher in acetaminophen overdose patients with poor outcome. Hepatology 2014; 60 (4) 1336-1345
  • 81 Marques PE, Oliveira AG, Pereira RV , et al. Hepatic DNA deposition drives drug-induced liver injury and inflammation in mice. Hepatology 2015; 61 (1) 348-360
  • 82 Bala S, Petrasek J, Mundkur S , et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology 2012; 56 (5) 1946-1957
  • 83 Kay E, Scotland RS, Whiteford JR. Toll-like receptors: Role in inflammation and therapeutic potential. Biofactors 2014; 40 (3) 284-294
  • 84 Di Virgilio F. P2X receptors and inflammation. Curr Med Chem 2015; 22 (7) 866-877
  • 85 Miura K, Kodama Y, Inokuchi S , et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology 2010; 139 (1) 323-34.e7
  • 86 Soares JB, Pimentel-Nunes P, Roncon-Albuquerque R, Leite-Moreira A. The role of lipopolysaccharide/toll-like receptor 4 signaling in chronic liver diseases. Hepatol Int 2010; 4 (4) 659-672
  • 87 Mcdonald KA, Huang H, Tohme S , et al. Toll-like receptor 4 (TLR4) antagonist eritoran tetrasodium attenuates liver ischemia and reperfusion injury through inhibition of high-mobility group box protein B1 (HMGB1) signaling. Mol Med 2014; 20: 639-648
  • 88 Barrat FJ, Meeker T, Chan JH, Guiducci C, Coffman RL. Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur J Immunol 2007; 37 (12) 3582-3586
  • 89 Garcia-Martinez I, Ouyang X, Santoro N , et al. Elevated plasma DNA in patients with NASH and reduced liver injury in mice with absence of TLR9 on Kupffer cells. Hepatology 2014; 60: 517A
  • 90 Rice JW, Veal JM, Fadden RP , et al. Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis. Arthritis Rheum 2008; 58 (12) 3765-3775
  • 91 Tago K, Tsukahara F, Naruse M, Yoshioka T, Takano K. Hsp90 inhibitors attenuate effect of dexamethasone on activated NF-kappaB and AP-1. Life Sci 2004; 74 (16) 1981-1992
  • 92 Wang X, Wang S, Liu Y , et al. Comparative effects of SNX-7081 and SNX-2112 on cell cycle, apoptosis and Hsp90 client proteins in human cancer cells. Oncol Rep 2015; 33 (1) 230-238
  • 93 López-Castejón G, Pelegrín P. Current status of inflammasome blockers as anti-inflammatory drugs. Expert Opin Investig Drugs 2012; 21 (7) 995-1007
  • 94 Hoque R, Vodovotz Y, Mehal W. Therapeutic strategies in inflammasome mediated diseases of the liver. J Hepatol 2013; 58 (5) 1047-1052
  • 95 Szabo G, Csak T. Inflammasomes in liver diseases. J Hepatol 2012; 57 (3) 642-654
  • 96 Gross O, Thomas CJ, Guarda G, Tschopp J. The inflammasome: an integrated view. Immunol Rev 2011; 243 (1) 136-151
  • 97 Lamkanfi M, Dixit VM. Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol 2012; 28: 137-161
  • 98 Henao-Mejia J, Elinav E, Jin C , et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012; 482 (7384) 179-185
  • 99 Wree A, McGeough MD, Peña CA , et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J Mol Med (Berl) 2014; 92 (10) 1069-1082
  • 100 Han YP, Zhou L, Wang J , et al. Essential role of matrix metalloproteinases in interleukin-1-induced myofibroblastic activation of hepatic stellate cell in collagen. J Biol Chem 2004; 279 (6) 4820-4828
  • 101 Moltó A, Olivé A. Anti-IL-1 molecules: new comers and new indications. Joint Bone Spine 2010; 77 (2) 102-107
  • 102 Petrasek J, Bala S, Csak T , et al. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J Clin Invest 2012; 122 (10) 3476-3489
  • 103 Mack M. A phase 2, double-blind randomized controlled trial of anakinra, pentoxifylline, and zinc compared to methylprednisolone in severe acute alcoholic hepatitis. ClinicalTrials.gov. I.D. #NCT01809132. Bethesda, MD: National Institutes of Health
  • 104 Coll RC, Robertson A, Butler M, Cooper M, O'Neill LA. The cytokine release inhibitory drug CRID3 targets ASC oligomerisation in the NLRP3 and AIM2 inflammasomes. PLoS ONE 2011; 6 (12) e29539
  • 105 Coll RC, Robertson AA, Chae JJ , et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 2015; 21 (3) 248-255
  • 106 Mridha AWA, Robertson A, Teoh NC , et al. Blocking the NLRP3 inflammasome prevents inflammatory recruitment and fibrotic progression in experimental NASH. Paper presented at: the AASLD Liver Meeting; November 13–17, 2015; San Francisco, CA