Semin Liver Dis 2016; 36(04): 299-305
DOI: 10.1055/s-0036-1593879
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Microbiome and the Liver: The Basics

David W. Victor III
1   Division of Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital, Weill Cornell Medical College, Houston, Texas.
,
Eamonn M. M. Quigley
1   Division of Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital, Weill Cornell Medical College, Houston, Texas.
› Author Affiliations
Further Information

Publication History

Publication Date:
20 December 2016 (online)

Abstract

The relationships between the microbiota and other aspects of normal human biology continue to be explored. Indeed, the volume of information relating to the interplay between the host and the microbiota has grown exponentially—especially with the advent of ever-improving techniques for rapidly sequencing and identifying bacterial populations and their functions. The gut is initially sterile at birth and colonization and dynamic changes occur during infancy and early childhood in order to establish a mature microbiome. The mature microbiome has direct and important interactions with host metabolism. Bacterial translocation from the gut microbiome is thought to be a key driver of inflammation in liver disease and changes in tolerance to these bacteria drive inflammation in the liver and elsewhere in the host. As we are better able to describe the composition and functional properties of the microbiome, the range of its impact on the homeostatic functions of the human body and implications for disease continue to be extended.

 
  • References

  • 1 Haque TR, Barritt IV AS. Intestinal microbiota in liver disease. Best Pract Res Clin Gastroenterol 2016; 30 (1) 133-142
  • 2 Marques TM, Wall R, Ross RP, Fitzgerald GF, Ryan CA, Stanton C. Programming infant gut microbiota: influence of dietary and environmental factors. Curr Opin Biotechnol 2010; 21 (2) 149-156
  • 3 Bäckhed F. Programming of host metabolism by the gut microbiota. Ann Nutr Metab 2011; 58 (Suppl. 02) 44-52
  • 4 Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005; 307 (5717) 1915-1920
  • 5 Lv LX, Fang DQ, Shi D , et al. Alterations and correlations of the gut microbiome, metabolism and immunity in patients with primary biliary cirrhosis. Environ Microbiol 2016; 18 (7) 2272-2286
  • 6 Quigley EM, Stanton C, Murphy EF. The gut microbiota and the liver. Pathophysiological and clinical implications. J Hepatol 2013; 58 (5) 1020-1027
  • 7 Giannelli V, Di Gregorio V, Iebba V , et al. Microbiota and the gut-liver axis: bacterial translocation, inflammation and infection in cirrhosis. World J Gastroenterol 2014; 20 (45) 16795-16810
  • 8 Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans AD, de Vos WM. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 2002; 68 (7) 3401-3407
  • 9 Henao-Mejia J, Elinav E, Thaiss CA, Licona-Limon P, Flavell RA. Role of the intestinal microbiome in liver disease. J Autoimmun 2013; 46: 66-73
  • 10 Szabo G, Bala S, Petrasek J, Gattu A. Gut-liver axis and sensing microbes. Dig Dis 2010; 28 (6) 737-744
  • 11 Terjung B, Söhne J, Lechtenberg B , et al. p-ANCAs in autoimmune liver disorders recognise human beta-tubulin isotype 5 and cross-react with microbial protein FtsZ. Gut 2010; 59 (6) 808-816
  • 12 Chen Y, Yang F, Lu H , et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 2011; 54 (2) 562-572
  • 13 Wang Z, Klipfell E, Bennett BJ , et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472 (7341) 57-63
  • 14 Rutten NB, Rijkers GT, Meijssen CB , et al. Intestinal microbiota composition after antibiotic treatment in early life: the INCA study. BMC Pediatr 2015; 15: 204
  • 15 Martin R, Makino H, Cetinyurek Yavuz A , et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS One 2016; 11 (6) e0158498
  • 16 Eckburg PB, Bik EM, Bernstein CN , et al. Diversity of the human intestinal microbial flora. Science 2005; 308 (5728) 1635-1638
  • 17 Rial SA, Karelis AD, Bergeron KF, Mounier C. Gut microbiota and metabolic health: the potential beneficial effects of a medium chain triglyceride diet in obese individuals. Nutrients 2016; 8 (5) E281
  • 18 Purohit V, Bode JC, Bode C , et al. Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: summary of a symposium. Alcohol 2008; 42 (5) 349-361
  • 19 Brandl K, Schnabl B. Is intestinal inflammation linking dysbiosis to gut barrier dysfunction during liver disease?. Expert Rev Gastroenterol Hepatol 2015; 9 (8) 1069-1076
  • 20 Leung C, Rivera L, Furness JB, Angus PW. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol 2016; 13 (7) 412-425
  • 21 Yu J, Marsh S, Hu J, Feng W, Wu C. The pathogenesis of nonalcoholic fatty liver disease: interplay between diet, gut microbiota, and genetic background. Gastroenterol Res Pract 2016; 2016: 2862173
  • 22 Koenig JE, Spor A, Scalfone N , et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 2011; 108 (Suppl. 01) 4578-4585
  • 23 Bajaj JS, Heuman DM, Sanyal AJ , et al. Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy. PLoS One 2013; 8 (4) e60042
  • 24 Bajaj JS, Hylemon PB, Ridlon JM , et al. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am J Physiol Gastrointest Liver Physiol 2012; 303 (6) G675-G685
  • 25 Dumas ME, Barton RH, Toye A , et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A 2006; 103 (33) 12511-12516
  • 26 Ponziani FR, Gerardi V, Pecere S , et al. Effect of rifaximin on gut microbiota composition in advanced liver disease and its complications. World J Gastroenterol 2015; 21 (43) 12322-12333
  • 27 Bajaj JS, Heuman DM, Hylemon PB , et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol 2014; 60 (5) 940-947
  • 28 Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science 2001; 291 (5505) 881-884
  • 29 Bäckhed F, Ding H, Wang T , et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 2004; 101 (44) 15718-15723
  • 30 Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444 (7122) 1027-1031
  • 31 Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005; 102 (31) 11070-11075
  • 32 Ma X, Hua J, Li Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. J Hepatol 2008; 49 (5) 821-830
  • 33 Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009; 9 (5) 313-323
  • 34 Umesaki Y. Use of gnotobiotic mice to identify and characterize key microbes responsible for the development of the intestinal immune system. Proc Jpn Acad, Ser B, Phys Biol Sci 2014; 90 (9) 313-332
  • 35 Chung H, Pamp SJ, Hill JA , et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 2012; 149 (7) 1578-1593
  • 36 Slack E, Hapfelmeier S, Stecher B , et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 2009; 325 (5940) 617-620
  • 37 Usami M, Miyoshi M, Yamashita H. Gut microbiota and host metabolism in liver cirrhosis. World J Gastroenterol 2015; 21 (41) 11597-11608
  • 38 Wang HB, Wang PY, Wang X, Wan YL, Liu YC. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig Dis Sci 2012; 57 (12) 3126-3135
  • 39 Miyoshi M, Sakaki H, Usami M , et al. Oral administration of tributyrin increases concentration of butyrate in the portal vein and prevents lipopolysaccharide-induced liver injury in rats. Clin Nutr 2011; 30 (2) 252-258
  • 40 Tabibian JH, Varghese C, LaRusso NF, O'Hara SP. The enteric microbiome in hepatobiliary health and disease. Liver Int 2016; 36 (4) 480-487
  • 41 Begley M, Gahan CG, Hill C. The interaction between bacteria and bile. FEMS Microbiol Rev 2005; 29 (4) 625-651
  • 42 Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 2014; 146 (6) 1513-1524
  • 43 Neuschwander-Tetri BA, Loomba R, Sanyal AJ , et al; NASH Clinical Research Network. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 2015; 385 (9972) 956-965
  • 44 Watanabe M, Houten SM, Mataki C , et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006; 439 (7075) 484-489
  • 45 Hoefert B. Über die bakterienbefunde im duodenalsaft von gesunden und kranken. Zschr Klin Med 1921; 92: 221-235
  • 46 Bellot P, Francés R, Such J. Pathological bacterial translocation in cirrhosis: pathophysiology, diagnosis and clinical implications. Liver Int 2013; 33 (1) 31-39
  • 47 Hartmann P, Seebauer CT, Schnabl B. Alcoholic liver disease: the gut microbiome and liver cross talk. Alcohol Clin Exp Res 2015; 39 (5) 763-775
  • 48 Ghoshal UC, Srivastava D, Ghoshal U, Misra A. Breath tests in the diagnosis of small intestinal bacterial overgrowth in patients with irritable bowel syndrome in comparison with quantitative upper gut aspirate culture. Eur J Gastroenterol Hepatol 2014; 26 (7) 753-760
  • 49 Yang CY, Chang CS, Chen GH. Small-intestinal bacterial overgrowth in patients with liver cirrhosis, diagnosed with glucose H2 or CH4 breath tests. Scand J Gastroenterol 1998; 33 (8) 867-871
  • 50 Teltschik Z, Wiest R, Beisner J , et al. Intestinal bacterial translocation in rats with cirrhosis is related to compromised Paneth cell antimicrobial host defense. Hepatology 2012; 55 (4) 1154-1163
  • 51 Kwak DS, Jun DW, Seo JG , et al. Short-term probiotic therapy alleviates small intestinal bacterial overgrowth, but does not improve intestinal permeability in chronic liver disease. Eur J Gastroenterol Hepatol 2014; 26 (12) 1353-1359
  • 52 Such J, Francés R, Muñoz C , et al. Detection and identification of bacterial DNA in patients with cirrhosis and culture-negative, nonneutrocytic ascites. Hepatology 2002; 36 (1) 135-141
  • 53 Rai R, Saraswat VA, Dhiman RK. Gut microbiota: its role in hepatic encephalopathy. J Clin Exp Hepatol 2015; 5 (Suppl. 01) S29-S36
  • 54 Gómez-Hurtado I, Such J, Sanz Y, Francés R. Gut microbiota-related complications in cirrhosis. World J Gastroenterol 2014; 20 (42) 15624-15631
  • 55 Pérez-Paramo M, Muñoz J, Albillos A , et al. Effect of propranolol on the factors promoting bacterial translocation in cirrhotic rats with ascites. Hepatology 2000; 31 (1) 43-48
  • 56 Garcia-Tsao G, Wiest R. Gut microflora in the pathogenesis of the complications of cirrhosis. Best Pract Res Clin Gastroenterol 2004; 18 (2) 353-372
  • 57 Casafont F, Sánchez E, Martín L, Agüero J, Romero FP. Influence of malnutrition on the prevalence of bacterial translocation and spontaneous bacterial peritonitis in experimental cirrhosis in rats. Hepatology 1997; 25 (6) 1334-1337
  • 58 Fouts DE, Torralba M, Nelson KE, Brenner DA, Schnabl B. Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. J Hepatol 2012; 56 (6) 1283-1292
  • 59 Bunchorntavakul C, Chamroonkul N, Chavalitdhamrong D. Bacterial infections in cirrhosis: A critical review and practical guidance. World J Hepatol 2016; 8 (6) 307-321
  • 60 Berg RD. Bacterial translocation from the gastrointestinal tract. Trends Microbiol 1995; 3 (4) 149-154
  • 61 Wiest R, Lawson M, Geuking M. Pathological bacterial translocation in liver cirrhosis. J Hepatol 2014; 60 (1) 197-209
  • 62 Benten D, Wiest R. Gut microbiome and intestinal barrier failure--the “Achilles heel” in hepatology?. J Hepatol 2012; 56 (6) 1221-1223
  • 63 Cirera I, Bauer TM, Navasa M , et al. Bacterial translocation of enteric organisms in patients with cirrhosis. J Hepatol 2001; 34 (1) 32-37
  • 64 Francés R, González-Navajas JM, Zapater P , et al. Translocation of bacterial DNA from Gram-positive microorganisms is associated with a species-specific inflammatory response in serum and ascitic fluid of patients with cirrhosis. Clin Exp Immunol 2007; 150 (2) 230-237
  • 65 Appenrodt B, Grünhage F, Gentemann MG, Thyssen L, Sauerbruch T, Lammert F. Nucleotide-binding oligomerization domain containing 2 (NOD2) variants are genetic risk factors for death and spontaneous bacterial peritonitis in liver cirrhosis. Hepatology 2010; 51 (4) 1327-1333
  • 66 Harputluoglu MM, Dertli R, Otlu B , et al. Nucleotide-binding oligomerization domain-containing protein 2 variants in patients with spontaneous bacterial peritonitis. Dig Dis Sci 2016; 61 (6) 1545-1552
  • 67 Rasaratnam B, Connelly N, Chin-Dusting J. Nitric oxide and the hyperdynamic circulation in cirrhosis: is there a role for selective intestinal decontamination?. Clin Sci (Lond) 2004; 107 (5) 425-434
  • 68 Terjung B, Spengler U. Atypical p-ANCA in PSC and AIH: a hint toward a “leaky gut”?. Clin Rev Allergy Immunol 2009; 36 (1) 40-51
  • 69 Schnabl B. Linking intestinal homeostasis and liver disease. Curr Opin Gastroenterol 2013; 29 (3) 264-270
  • 70 Ramachandran A, Prabhu R, Thomas S, Reddy JB, Pulimood A, Balasubramanian KA. Intestinal mucosal alterations in experimental cirrhosis in the rat: role of oxygen free radicals. Hepatology 2002; 35 (3) 622-629
  • 71 Tsiaoussis GI, Assimakopoulos SF, Tsamandas AC, Triantos CK, Thomopoulos KC. Intestinal barrier dysfunction in cirrhosis: current concepts in pathophysiology and clinical implications. World J Hepatol 2015; 7 (17) 2058-2068
  • 72 Sipeki N, Antal-Szalmas P, Lakatos PL, Papp M. Immune dysfunction in cirrhosis. World J Gastroenterol 2014; 20 (10) 2564-2577
  • 73 Heymann F, Tacke F. Immunology in the liver--from homeostasis to disease. Nat Rev Gastroenterol Hepatol 2016; 13 (2) 88-110
  • 74 Zhu Q, Zou L, Jagavelu K , et al. Intestinal decontamination inhibits TLR4 dependent fibronectin-mediated cross-talk between stellate cells and endothelial cells in liver fibrosis in mice. J Hepatol 2012; 56 (4) 893-899
  • 75 Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol 2009; 27: 147-163
  • 76 Adachi Y, Moore LE, Bradford BU, Gao W, Thurman RG. Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology 1995; 108 (1) 218-224
  • 77 Li Z, Yang S, Lin H , et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 2003; 37 (2) 343-350
  • 78 Thalheimer U, Triantos CK, Samonakis DN, Patch D, Burroughs AK. Infection, coagulation, and variceal bleeding in cirrhosis. Gut 2005; 54 (4) 556-563
  • 79 Park B, Lee HR, Lee YJ. Alcoholic liver disease: focus on prodromal gut health. J Dig Dis 2016; 17 (8) 493-500
  • 80 Rasaratnam B, Kaye D, Jennings G, Dudley F, Chin-Dusting J. The effect of selective intestinal decontamination on the hyperdynamic circulatory state in cirrhosis. A randomized trial. Ann Intern Med 2003; 139 (3) 186-193
  • 81 Albillos A, de la Hera A, González M , et al. Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune and hemodynamic derangement. Hepatology 2003; 37 (1) 208-217
  • 82 Steib CJ, Hartmann AC, Hesler C , et al. Intraperitoneal LPS amplifies portal hypertension in rat liver fibrosis. Lab Invest 2010; 90 (7) 1024-1032
  • 83 Latz E. The inflammasomes: mechanisms of activation and function. Curr Opin Immunol 2010; 22 (1) 28-33
  • 84 Ganz M, Csak T, Nath B, Szabo G. Lipopolysaccharide induces and activates the Nalp3 inflammasome in the liver. World J Gastroenterol 2011; 17 (43) 4772-4778
  • 85 Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 2011; 54 (1) 133-144
  • 86 Arumugam M, Raes J, Pelletier E , et al; MetaHIT Consortium. Enterotypes of the human gut microbiome. Nature 2011; 473 (7346) 174-180