Semin Liver Dis 2016; 36(04): 312-316
DOI: 10.1055/s-0036-1593880
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Metabolic Role of the Microbiome: Implications for NAFLD and the Metabolic Syndrome

Eamonn M. M. Quigley
1   Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas
,
Ahmed Abu-Shanab
2   Department of Gastroenterology and Hepatology, Mater Misercordiae Hospital, Dublin, Ireland
,
Eileen F. Murphy
3   Alimentary Health Ltd, Cork, Ireland
,
Catherine Stanton
4   Alimentary Pharmabiotic Institute and Teagasc Food Research Center, Cork, Ireland
,
Howard P. Monsour Jr.
1   Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas
› Author Affiliations
Further Information

Publication History

Publication Date:
20 December 2016 (online)

Abstract

Nonalcoholic fatty liver disease (NAFLD) has rapidly emerged as one of the most prevalent liver diseases worldwide and is set to achieve virtually epidemic proportions if current trends in obesity continue. A considerable volume of data from animal experiments has revealed the magnitude of the metabolic contribution of the gut microbiome and how a disordered microbial population could contribute to the development of obesity and its complications, including NAFLD. Although considerable progress has been made in developing a role for the microbiome in NAFLD and nonalcoholic steatosis (NASH), there are still many issues to be resolved, including the nature and location of the altered microbiome (i.e., small intestine or colon, or both); the specificity of deficits in intestinal integrity to NAFLD/NASH versus liver disease in general; the metabolic pathways, in man, that are key to the influence of the microbiome; and finally, the therapeutic interventions that are likely to be of benefit to our patients.

As always, the situation in man is somewhat more complex than in animal models, but the role of the microbiota and of interventions that modulate the microbiome, though not yet ready for clinical practice, continue to be fertile areas for basic and clinical research.

 
  • References

  • 1 Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol 2009; 587 (Pt 17) 4153-4158
  • 2 Marchesi JR, Adams DH, Fava F , et al. The gut microbiota and host health: a new clinical frontier. Gut 2016; 65 (2) 330-339
  • 3 Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci U S A 2008; 105 (36) 13580-13585
  • 4 Carmody RN, Turnbaugh PJ. Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. J Clin Invest 2014; 124 (10) 4173-4181
  • 5 Quigley EM, Stanton C, Murphy EF. The gut microbiota and the liver. Pathophysiological and clinical implications. J Hepatol 2013; 58 (5) 1020-1027
  • 6 Gérard P. Gut microbiota and obesity. Cell Mol Life Sci 2016; 73 (1) 147-162
  • 7 Mazidi M, Rezaie P, Kengne AP, Mobarhan MG, Ferns GA. Gut microbiome and metabolic syndrome. Diabetes Metab Syndr 2016; 10 (2) (Suppl. 01) S150-S157
  • 8 Leung C, Rivera L, Furness JB, Angus PW. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol 2016; 13 (7) 412-425
  • 9 Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005; 102 (31) 11070-11075
  • 10 Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444 (7122) 1027-1031
  • 11 Ridaura VK, Faith JJ, Rey FE , et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013; 341 (6150) 1241214
  • 12 Galley JD, Bailey M, Kamp Dush C, Schoppe-Sullivan S, Christian LM. Maternal obesity is associated with alterations in the gut microbiome in toddlers. PLoS One 2014; 9 (11) e113026
  • 13 Parks BW, Nam E, Org E , et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab 2013; 17 (1) 141-152
  • 14 Dugas LR, Fuller M, Gilbert J, Layden BT. The obese gut microbiome across the epidemiologic transition. Emerg Themes Epidemiol 2016; 13: 2
  • 15 Woting A, Blaut M. The intestinal microbiota in metabolic disease. Nutrients 2016; 8 (4) 202
  • 16 Houghton D, Stewart CJ, Day CP, Trenell M. Gut microbiota and lifestyle interventions in NAFLD. Int J Mol Sci 2016; 17 (4) 447
  • 17 Yatsunenko T, Rey FE, Manary MJ , et al. Human gut microbiome viewed across age and geography. Nature 2012; 486 (7402) 222-227
  • 18 Moschen AR, Wieser V, Tilg H. Dietary factors: major regulators of the gut's microbiota. Gut Liver 2012; 6 (4) 411-416
  • 19 Clarke SF, Murphy EF, Nilaweera K , et al. The gut microbiota and its relationship to diet and obesity: new insights. Gut Microbes 2012; 3 (3) 186-202
  • 20 Claesson MJ, Jeffery IB, Conde S , et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012; 488 (7410) 178-184
  • 21 Clarke SF, Murphy EF, O'Sullivan O , et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 2014; 63 (12) 1913-1920
  • 22 Hacquard S, Garrido-Oter R, González A , et al. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 2015; 17 (5) 603-616
  • 23 Doré J, Blottière H. The influence of diet on the gut microbiota and its consequences for health. Curr Opin Biotechnol 2015; 32: 195-199
  • 24 Hildebrandt MA, Hoffmann C, Sherrill-Mix SA , et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 2009; 137 (5) 1716-24 .e1, 2
  • 25 Murphy EF, Cotter PD, Healy S , et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 2010; 59 (12) 1635-1642
  • 26 Machado MV, Cortez-Pinto H. Gut microbiota and nonalcoholic fatty liver disease. Ann Hepatol 2012; 11 (4) 440-449
  • 27 Sayin SI, Wahlström A, Felin J , et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013; 17 (2) 225-235
  • 28 Li F, Jiang C, Krausz KW , et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 2013; 4: 2384
  • 29 Cox LM, Blaser MJ. Pathways in microbe-induced obesity. Cell Metab 2013; 17 (6) 883-894
  • 30 Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012; 13 (10) 701-712
  • 31 Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest 2015; 125 (3) 926-938
  • 32 Perry RJ, Peng L, Barry NA , et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 2016; 534 (7606) 213-217
  • 33 Cani PD, Amar J, Iglesias MA , et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56 (7) 1761-1772
  • 34 Erridge C, Attina T, Spickett CM, Webb DJ. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 2007; 86 (5) 1286-1292
  • 35 Amar J, Burcelin R, Ruidavets JB , et al. Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr 2008; 87 (5) 1219-1223
  • 36 Penas-Steinhardt A, Barcos LS, Belforte FS , et al. Functional characterization of TLR4 +3725 G/C polymorphism and association with protection against overweight. PLoS One 2012; 7 (12) e50992
  • 37 Kim K-A, Gu W, Lee I-A, Joh E-H, Kim D-H. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signalling pathway. PLoS One 2012; 7: e47713
  • 38 Vijay-Kumar M, Aitken JD, Carvalho FA , et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 2010; 328 (5975) 228-231
  • 39 Turnbaugh PJ, Hamady M, Yatsunenko T , et al. A core gut microbiome in obese and lean twins. Nature 2009; 457 (7228) 480-484
  • 40 Greenblum S, Turnbaugh PJ, Borenstein E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 2012; 109 (2) 594-599
  • 41 Karlsson FH, Tremaroli V, Nookaew I , et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013; 498 (7452) 99-103
  • 42 Zupancic ML, Cantarel BL, Liu Z , et al. Analysis of the gut microbiota in the old order Amish and its relation to the metabolic syndrome. PLoS One 2012; 7 (8) e43052
  • 43 Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett 2014; 588 (22) 4223-4233
  • 44 Quigley EM. Gastrointestinal dysfunction in liver disease and portal hypertension. Gut-liver interactions revisited. Dig Dis Sci 1996; 41 (3) 557-561
  • 45 Fukui H. Gut-liver axis in liver cirrhosis: How to manage leaky gut and endotoxemia. World J Hepatol 2015; 7 (3) 425-442
  • 46 Abu-Shanab A, Quigley EM. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2010; 7 (12) 691-701
  • 47 Quigley EM, Monsour HP. The gut microbiota and nonalcoholic fatty liver disease. Semin Liver Dis 2015; 35 (3) 262-269
  • 48 Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 2001; 48 (2) 206-211
  • 49 Shanab AA, Scully P, Crosbie O , et al. Small intestinal bacterial overgrowth in nonalcoholic steatohepatitis: association with toll-like receptor 4 expression and plasma levels of interleukin 8. Dig Dis Sci 2011; 56 (5) 1524-1534
  • 50 Bajaj JS, Hylemon PB, Ridlon JM , et al. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am J Physiol Gastrointest Liver Physiol 2012; 303 (6) G675-G685
  • 51 Qin N, Yang F, Li A , et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014; 513 (7516) 59-64
  • 52 Bajaj JS, Heuman DM, Hylemon PB , et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol 2014; 60 (5) 940-947
  • 53 Raman M, Ahmed I, Gillevet PM , et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2013; 11 (7) 868-75 .e1, 3
  • 54 Mouzaki M, Comelli EM, Arendt BM , et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 2013; 58 (1) 120-127
  • 55 Zhu L, Baker SS, Gill C , et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 2013; 57 (2) 601-609
  • 56 Wong VW-S, Tse C-H, Lam TT-Y , et al. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis--a longitudinal study. PLoS One 2013; 8 (4) e62885
  • 57 Jiang W, Wu N, Wang X , et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep 2015; 5: 8096
  • 58 Quigley EM. Leaky gut—concept or clinical entity?. Curr Opin Gastroenterol 2016; 32 (2) 74-79
  • 59 Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 2011; 140 (3) 976-986
  • 60 Engstler AJ, Aumiller T, Degen C , et al. Insulin resistance alters hepatic ethanol metabolism: studies in mice and children with non-alcoholic fatty liver disease. Gut 2016; 65 (9) 1564-1571
  • 61 Henao-Mejia J, Elinav E, Jin C , et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012; 482 (7384) 179-185
  • 62 Sawada K, Ohtake T, Hasebe T , et al. Augmented hepatic Toll-like receptors by fatty acids trigger the pro-inflammatory state of non-alcoholic fatty liver disease in mice. Hepatol Res 2014; 44 (8) 920-934
  • 63 Wagnerberger S, Spruss A, Kanuri G , et al. Toll-like receptors 1-9 are elevated in livers with fructose-induced hepatic steatosis. Br J Nutr 2012; 107 (12) 1727-1738
  • 64 Miura K, Ohnishi H. Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20 (23) 7381-7391
  • 65 Seki E, Schnabl B. Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J Physiol 2012; 590 (3) 447-458
  • 66 Jiang C, Xie C, Li F , et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest 2015; 125 (1) 386-402
  • 67 Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 2014; 146 (6) 1513-1524
  • 68 Chassaing B, Etienne-Mesmin L, Gewirtz AT. Microbiota-liver axis in hepatic disease. Hepatology 2014; 59 (1) 328-339
  • 69 Bergheim I, Weber S, Vos M , et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol 2008; 48 (6) 983-992
  • 70 Vrieze A, Out C, Fuentes S , et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol 2014; 60 (4) 824-831
  • 71 Gangarapu V, Ince AT, Baysal B , et al. Efficacy of rifaximin on circulating endotoxins and cytokines in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2015; 27 (7) 840-845
  • 72 Vrieze A, Van Nood E, Holleman F , et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143 (4) 913-6 .e7
  • 73 Chambers ES, Viardot A, Psichas A , et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 2015; 64 (11) 1744-1754
  • 74 Polyzos SA, Nikolopoulos P, Stogianni A, Romiopoulos I, Katsinelos P, Kountouras J. Effect of Helicobacter pylori eradication on hepatic steatosis, NAFLD fibrosis score and HSENSI in patients with nonalcoholic steatohepatitis: a MR imaging-based pilot open-label study. Arq Gastroenterol 2014; 51 (3) 261-268
  • 75 Mouzaki M, Bandsma R. Targeting the gut microbiota for the treatment of non-alcoholic fatty liver disease. Curr Drug Targets 2015; 16 (12) 1324-1331
  • 76 Lirussi F, Mastropasqua E, Orando S, Orlando R. Probiotics for non-alcoholic fatty liver disease and/or steatohepatitis. Cochrane Database Syst Rev 2007; (1) CD005165
  • 77 Tarantino G, Finelli C. Systematic review on intervention with prebiotics/probiotics in patients with obesity-related nonalcoholic fatty liver disease. Future Microbiol 2015; 10 (5) 889-902
  • 78 Sáez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, Plaza-Diaz J, Gil A. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials. Int J Mol Sci 2016; 17 (6) 928
  • 79 Ferolla SM, Armiliato GN, Couto CA, Ferrari TC. The role of intestinal bacteria overgrowth in obesity-related nonalcoholic fatty liver disease. Nutrients 2014; 6 (12) 5583-5599
  • 80 Llorente C, Schnabl B. The gut microbiota and liver disease. Cell Mol Gastroenterol Hepatol 2015; 1 (3) 275-284
  • 81 Yuan L, Bambha K. Bile acid receptors and nonalcoholic fatty liver disease. World J Hepatol 2015; 7 (28) 2811-2818
  • 82 Wan X, Xu C, Yu C, Li Y. Role of NLRP3 inflammasome in the progression of NAFLD to NASH. Can J Gastroenterol Hepatol 2016; 2016: 6489012