Semin Neurol 2017; 37(05): 510-537
DOI: 10.1055/s-0037-1608808
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Neuroimaging in Dementia

Adam M. Staffaroni
1   Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
,
Fanny M. Elahi
1   Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
,
Dana McDermott
1   Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
,
Kacey Marton
1   Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
,
Elissaios Karageorgiou
1   Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
2   Neurological Institute of Athens, Athens, Greece
,
Simone Sacco
1   Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
3   Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
,
Matteo Paoletti
1   Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
3   Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
,
Eduardo Caverzasi
1   Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
4   Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
,
Christopher P. Hess
5   Division of Neuroradiology, Department of Radiology, University of California, San Francisco (UCSF), California
,
Howard J. Rosen
1   Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
,
Michael D. Geschwind
1   Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
› Author Affiliations
Further Information

Publication History

Publication Date:
05 December 2017 (online)

Abstract

Although the diagnosis of dementia still is primarily based on clinical criteria, neuroimaging is playing an increasingly important role. This is in large part due to advances in techniques that can assist with discriminating between different syndromes. Magnetic resonance imaging remains at the core of differential diagnosis, with specific patterns of cortical and subcortical changes having diagnostic significance. Recent developments in molecular PET imaging techniques have opened the door for not only antemortem but early, even preclinical, diagnosis of underlying pathology. This is vital, as treatment trials are underway for pharmacological agents with specific molecular targets, and numerous failed trials suggest that earlier treatment is needed. This article provides an overview of classic neuroimaging findings as well as new and cutting-edge research techniques that assist with clinical diagnosis of a range of dementia syndromes, with an emphasis on studies using pathologically proven cases.

 
  • References

  • 1 Crutch SJ, Schott JM, Rabinovici GD. , et al; Alzheimer's Association ISTAART Atypical Alzheimer's Disease and Associated Syndromes Professional Interest Area. Consensus classification of posterior cortical atrophy. Alzheimers Dement 2017; 13 (08) 870-884 . Doi: 10.1016/j.jalz.2017.01.014
  • 2 McKhann GM, Knopman DS, Chertkow H. , et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011; 7 (03) 263-269 . Doi: 10.1016/j.jalz.2011.03.005
  • 3 Sacks CA, Avorn J, Kesselheim AS. The Failure of Solanezumab - How the FDA Saved Taxpayers Billions. N Engl J Med 2017; 376 (18) 1706-1708 . Doi: 10.1056/NEJMp1701047
  • 4 Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron 2009; 62 (01) 42-52
  • 5 Ossenkoppele R, Cohn-Sheehy BI, La Joie R. , et al. Atrophy patterns in early clinical stages across distinct phenotypes of Alzheimer's disease. Hum Brain Mapp 2015; 36 (11) 4421-4437 . Doi: 10.1002/hbm.22927 [doi]
  • 6 Ossenkoppele R, Jansen WJ, Rabinovici GD. , et al; Amyloid PET Study Group. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA 2015; 313 (19) 1939-1949 . Doi: 10.1001/jama.2015.4669 [doi]
  • 7 Suemoto CK, Ferretti-Rebustini REL, Rodriguez RD. , et al. Neuropathological diagnoses and clinical correlates in older adults in Brazil: a cross-sectional study. Brayne C, ed. PLOS Med 2017; 14 (03) e1002267 . doi:10.1371/journal.pmed.1002267
  • 8 Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 2011; 70 (11) 960-969 . Doi: 10.1097/NEN.0b013e318232a379 [doi]
  • 9 Grinberg LT, Rüb U, Ferretti RE. , et al; Brazilian Brain Bank Study Group. The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer's disease. A precocious onset?. Neuropathol Appl Neurobiol 2009; 35 (04) 406-416 . Doi: 10.1111/j.1365-2990.2009.00997.x [doi]
  • 10 Frisoni GB, Bocchetta M, Chételat G. , et al; ISTAART's NeuroImaging Professional Interest Area. Imaging markers for Alzheimer disease: which vs how. Neurology 2013; 81 (05) 487-500 . Doi: 10.1212/WNL.0b013e31829d86e8
  • 11 Hashimoto M, Yasuda M, Tanimukai S. , et al. Apolipoprotein E epsilon 4 and the pattern of regional brain atrophy in Alzheimer's disease. Neurology 2001; 57 (08) 1461-1466
  • 12 van de Pol LA, van der Flier WM, Korf ES, Fox NC, Barkhof F, Scheltens P. Baseline predictors of rates of hippocampal atrophy in mild cognitive impairment. Neurology 2007; 69 (15) 1491-1497
  • 13 Li B, Shi J, Gutman BA. , et al; Alzheimer's Disease Neuroimaging Initiative. Influence of APOE Genotype on Hippocampal Atrophy over Time - An N=1925 Surface-Based ADNI Study. PLoS One 2016; 11 (04) e0152901 . Doi: 10.1371/journal.pone.0152901 [doi]
  • 14 Choo IH, Lee DY, Oh JS. , et al. Posterior cingulate cortex atrophy and regional cingulum disruption in mild cognitive impairment and Alzheimer's disease. Neurobiol Aging 2010; 31 (05) 772-779 . Doi: 10.1016/j.neurobiolaging.2008.06.015
  • 15 Lee SE, Rabinovici GD, Mayo MC. , et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol 2011; 70 (02) 327-340 . Doi: 10.1002/ana.22424
  • 16 Gorno-Tempini ML, Dronkers NF, Rankin KP. , et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 2004; 55 (03) 335-346 . Doi: 10.1002/ana.10825
  • 17 Desikan RS, Rafii MS, Brewer JB, Hess CP. An expanded role for neuroimaging in the evaluation of memory impairment. AJNR Am J Neuroradiol 2013; 34 (11) 2075-2082
  • 18 Ellis RJ, Olichney JM, Thal LJ. , et al. Cerebral amyloid angiopathy in the brains of patients with Alzheimer's disease: the CERAD experience, Part XV. Neurology 1996; 46 (06) 1592-1596 . Doi: 10.1212/WNL.46.6.1592
  • 19 Yamada M. Cerebral amyloid angiopathy: emerging concepts. J Stroke 2015; 17 (01) 17-30 . Doi: 10.5853/jos.2015.17.1.17 [doi]
  • 20 Buckner RL, Snyder AZ, Shannon BJ. , et al. Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 2005; 25 (34) 7709-7717
  • 21 Karageorgiou E, Lewis SM, McCarten JR. , et al. Canonical correlation analysis of synchronous neural interactions and cognitive deficits in Alzheimer's dementia. J Neural Eng 2012; 9 (05) 056003 . Doi: 10.1088/1741-2560/9/5/056003
  • 22 Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 1997; 42 (01) 85-94 . Doi: 10.1002/ana.410420114 [doi]
  • 23 Jagust W, Thisted R, Devous Sr MDS. , et al. SPECT perfusion imaging in the diagnosis of Alzheimer's disease: a clinical-pathologic study. Neurology 2001; 56 (07) 950-956
  • 24 Ibáñez V, Pietrini P, Alexander GE. , et al. Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer's disease. Neurology 1998; 50 (06) 1585-1593 http://www.ncbi.nlm.nih.gov/pubmed/9633698 Accessed June 4, 2017
  • 25 Sanchez-Catasus CA, Stormezand GN, van Laar PJ, De Deyn PP, Sanchez MA, Dierckx RA. FDG-PET for Prediction of AD Dementia in Mild Cognitive Impairment. A Review of the State of the Art with Particular Emphasis on the Comparison with Other Neuroimaging Modalities (MRI and Perfusion SPECT). Curr Alzheimer Res 2017; 14 (02) 127-142
  • 26 Lehmann M, Ghosh PM, Madison C. , et al. Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer's disease. Brain 2013; 136 (Pt 3): 844-858
  • 27 Jansen WJ, Ossenkoppele R, Knol DL. , et al; Amyloid Biomarker Study Group. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 2015; 313 (19) 1924-1938 . Doi: 10.1001/jama.2015.4668
  • 28 Donohue MC, Sperling RA, Petersen R, Sun CK, Weiner MW, Aisen PS. ; Alzheimer's Disease Neuroimaging Initiative. Association Between Elevated Brain Amyloid and Subsequent Cognitive Decline Among Cognitively Normal Persons. JAMA 2017; 317 (22) 2305-2316 . Doi: 10.1001/jama.2017.6669
  • 29 Ossenkoppele R, Schonhaut DR, Schöll M. , et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. Brain 2016; 139 (Pt 5): 1551-1567
  • 30 Gorelick PB, Scuteri A, Black SE. , et al; American Heart Association Stroke Council, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2011; 42 (09) 2672-2713 . Doi: 10.1161/STR.0b013e3182299496
  • 31 Jellinger KA. Pathology and pathogenesis of vascular cognitive impairment-a critical update. Front Aging Neurosci 2013; 5: 17 . Doi: 10.3389/fnagi.2013.00017
  • 32 Zaccai J, Ince P, Brayne C. Population-based neuropathological studies of dementia: design, methods and areas of investigation--a systematic review. BMC Neurol 2006; 6: 2 . Doi: 10.1186/1471-2377-6-2
  • 33 Grinberg LT, Nitrini R, Suemoto CK. , et al. Prevalence of dementia subtypes in a developing country: a clinicopathological study. Clinics (Sao Paulo) 2013; 68 (08) 1140-1145 . Doi: 10.6061/clinics/2013(08)13 [doi]
  • 34 Korczyn AD. The complex nosological concept of vascular dementia. J Neurol Sci 2002; 203–204: 3-6
  • 35 Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 1997; 277 (10) 813-817
  • 36 Rosenberg GA, Wallin A, Wardlaw JM. , et al. Consensus statement for diagnosis of subcortical small vessel disease. J Cereb Blood Flow Metab 2016; 36 (01) 6-25 . Doi: 10.1038/jcbfm.2015.172
  • 37 Jokinen H, Gouw AA, Madureira S. , et al; LADIS Study Group. Incident lacunes influence cognitive decline: the LADIS study. Neurology 2011; 76 (22) 1872-1878 . Doi: 10.1212/WNL.0b013e31821d752f
  • 38 de Laat KF, Tuladhar AM, van Norden AGW, Norris DG, Zwiers MP, de Leeuw F-E. Loss of white matter integrity is associated with gait disorders in cerebral small vessel disease. Brain 2011; 134 (Pt 1): 73-83 . Doi: 10.1093/brain/awq343
  • 39 Wardlaw JM, Doubal FN, Valdes-Hernandez M. , et al. Blood-brain barrier permeability and long-term clinical and imaging outcomes in cerebral small vessel disease. Stroke 2013; 44 (02) 525-527 . Doi: 10.1161/STROKEAHA.112.669994
  • 40 Wardlaw JM. Blood-brain barrier and cerebral small vessel disease. J Neurol Sci 2010; 299 (1-2): 66-71 . Doi: 10.1016/j.jns.2010.08.042
  • 41 Wardlaw JM, Smith EE, Biessels GJ. , et al; STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12 (08) 822-838 . Doi: 10.1016/S1474-4422(13)70124-8
  • 42 Hachinski VC, Potter P, Merskey H. Leuko-araiosis. Arch Neurol 1987; 44 (01) 21-23
  • 43 Grimmer T, Faust M, Auer F. , et al. White matter hyperintensities predict amyloid increase in Alzheimer's disease. Neurobiol Aging 2012; 33 (12) 2766-2773 . Doi: 10.1016/j.neurobiolaging.2012.01.016
  • 44 Lee S, Viqar F, Zimmerman ME. , et al; Dominantly Inherited Alzheimer Network. White matter hyperintensities are a core feature of Alzheimer's disease: evidence from the dominantly inherited Alzheimer network. Ann Neurol 2016; 79 (06) 929-939 . Doi: 10.1002/ana.24647
  • 45 Lee DY, Fletcher E, Martinez O. , et al. Regional pattern of white matter microstructural changes in normal aging, MCI, and AD. Neurology 2009; 73 (21) 1722-1728 . Doi: 10.1212/WNL.0b013e3181c33afb
  • 46 Adams HH, Hilal S, Schwingenschuh P. , et al. A priori collaboration in population imaging: The Uniform Neuro-Imaging of Virchow-Robin Spaces Enlargement consortium. Alzheimers Dement (Amst) 2015; 1 (04) 513-520 . Doi: 10.1016/j.dadm.2015.10.004
  • 47 Ramirez J, Berezuk C, McNeely AA, Scott CJ, Gao F, Black SE. Visible Virchow-Robin spaces on magnetic resonance imaging of Alzheimer's disease patients and normal elderly from the Sunnybrook Dementia Study. J Alzheimers Dis 2015; 43 (02) 415-424 . Doi: 10.3233/JAD-132528
  • 48 Charidimou A, Jaunmuktane Z, Baron JC. , et al. White matter perivascular spaces: an MRI marker in pathology-proven cerebral amyloid angiopathy?. Neurology 2014; 82 (01) 57-62 . Doi: 10.1212/01.wnl.0000438225.02729.04 [doi]
  • 49 Martinez-Ramirez S, Pontes-Neto OM, Dumas AP. , et al. Topography of dilated perivascular spaces in subjects from a memory clinic cohort. Neurology 2013; 80 (17) 1551-1556 . Doi: 10.1212/WNL.0b013e31828f1876
  • 50 van Veluw SJ, Heringa SM, Kuijf HJ, Koek HL, Luijten PR, Biessels GJ. ; Utrecht Vascular Cognitive Impairment study group. Cerebral cortical microinfarcts at 7Tesla MRI in patients with early Alzheimer's disease. J Alzheimers Dis 2014; 39 (01) 163-167 . Doi: 10.3233/JAD-131040
  • 51 De Reuck J, Deramecourt V, Auger F. , et al. Post-mortem 7.0-tesla magnetic resonance study of cortical microinfarcts in neurodegenerative diseases and vascular dementia with neuropathological correlates. J Neurol Sci 2014; 346 (1-2): 85-89 . Doi: 10.1016/j.jns.2014.07.061
  • 52 van Dalen JW, Scuric EE, van Veluw SJ. , et al. Cortical microinfarcts detected in vivo on 3 Tesla MRI: clinical and radiological correlates. Stroke 2015; 46 (01) 255-257 . Doi: 10.1161/STROKEAHA.114.007568
  • 53 Román GC. Senile dementia of the Binswanger type. A vascular form of dementia in the elderly. JAMA 1987; 258 (13) 1782-1788
  • 54 Zhang CE, Wong SM, van de Haar HJ. , et al. Blood-brain barrier leakage is more widespread in patients with cerebral small vessel disease. Neurology 2017; 88 (05) 426-432 . Doi: 10.1212/WNL.0000000000003556
  • 55 Rosenberg GA. Neurological diseases in relation to the blood-brain barrier. J Cereb Blood Flow Metab 2012; 32 (07) 1139-1151 . Doi: 10.1038/jcbfm.2011.197
  • 56 Baykara E, Gesierich B, Adam R. , et al; Alzheimer's Disease Neuroimaging Initiative. A Novel Imaging Marker for Small Vessel Disease Based on Skeletonization of White Matter Tracts and Diffusion Histograms. Ann Neurol 2016; 80 (04) 581-592 . Doi: 10.1002/ana.24758
  • 57 Yan L, Liu CY, Smith RX. , et al. Assessing intracranial vascular compliance using dynamic arterial spin labeling. Neuroimage 2016; 124 (Pt A): 433-441 . Doi: 10.1016/j.neuroimage.2015.09.008
  • 58 Lu H, Liu P, Yezhuvath U, Cheng Y, Marshall O, Ge Y. MRI mapping of cerebrovascular reactivity via gas inhalation challenges. J Vis Exp 2014; 52306 (94) ••• . Doi: 10.3791/52306
  • 59 Schrag M, McAuley G, Pomakian J. , et al. Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study. Acta Neuropathol 2010; 119 (03) 291-302 . Doi: 10.1007/s00401-009-0615-z
  • 60 Seo SW, Hwa Lee B, Kim EJ. , et al. Clinical significance of microbleeds in subcortical vascular dementia. Stroke 2007; 38 (06) 1949-1951 . Doi: 10.1161/STROKEAHA.106.477315
  • 61 Razvi SSM, Davidson R, Bone I, Muir KW. The prevalence of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) in the west of Scotland. J Neurol Neurosurg Psychiatry 2005; 76 (05) 739-741 . Doi: 10.1136/jnnp.2004.051847
  • 62 Narayan SK, Gorman G, Kalaria RN, Ford GA, Chinnery PF. The minimum prevalence of CADASIL in northeast England. Neurology 2012; 78 (13) 1025-1027 . Doi: 10.1212/WNL.0b013e31824d586c
  • 63 Kalimo H, Ruchoux M-M, Viitanen M, Kalaria RN. CADASIL: a common form of hereditary arteriopathy causing brain infarcts and dementia. Brain Pathol 2002; 12 (03) 371-384 http://www.ncbi.nlm.nih.gov/pubmed/12146805 Accessed June 23, 2017
  • 64 Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser M-G. Review CADASIL. www.thelancet.com/neurology 2009 ;8. doi:10.1016/S1474-4422(09)70127-9.
  • 65 Ghosh M, Balbi M, Hellal F, Dichgans M, Lindauer U, Plesnila N. Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Ann Neurol 2015; 78 (06) 887-900 . Doi: 10.1002/ana.24512
  • 66 de Vries LS, Mancini GMS. Intracerebral hemorrhage and COL4A1 and COL4A2 mutations, from fetal life into adulthood. Ann Neurol 2012; 71 (04) 439-441 . Doi: 10.1002/ana.23544
  • 67 Choi JC. Genetics of cerebral small vessel disease. J Stroke 2015; 17 (01) 7-16 . Doi: 10.5853/jos.2015.17.1.7
  • 68 Meuwissen MEC, Halley DJJ, Smit LS. , et al. The expanding phenotype of COL4A1 and COL4A2 mutations: clinical data on 13 newly identified families and a review of the literature. Genet Med 2015; 17 (11) 843-853 . Doi: 10.1038/gim.2014.210
  • 69 Vahedi K, Alamowitch S. Clinical spectrum of type IV collagen (COL4A1) mutations: a novel genetic multisystem disease. Curr Opin Neurol 2011; 24 (01) 63-68 . Doi: 10.1097/WCO.0b013e32834232c6
  • 70 Weng Y-C, Sonni A, Labelle-Dumais C. , et al. COL4A1 mutations in patients with sporadic late-onset intracerebral hemorrhage. Ann Neurol 2012; 71 (04) 470-477 . Doi: 10.1002/ana.22682
  • 71 Rannikmäe K, Davies G, Thomson PA. , et al; METASTROKE Consortium; CHARGE WMH Group; ISGC ICH GWAS Study Collaboration; WMH in Ischemic Stroke GWAS Study Collaboration; International Stroke Genetics Consortium. Common variation in COL4A1/COL4A2 is associated with sporadic cerebral small vessel disease. Neurology 2015; 84 (09) 918-926 . Doi: 10.1212/WNL.0000000000001309
  • 72 Volonghi I, Pezzini A, Del Zotto E. , et al. Role of COL4A1 in basement-membrane integrity and cerebral small-vessel disease. The COL4A1 stroke syndrome. Curr Med Chem 2010; 17 (13) 1317-1324 http://www.ncbi.nlm.nih.gov/pubmed/20166936 Accessed June 22, 2017
  • 73 Gould DB, Phalan FC, van Mil SE. , et al. Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med 2006; 354 (14) 1489-1496 . Doi: 10.1056/NEJMoa053727
  • 74 Mann DMA, Snowden JS. Frontotemporal lobar degeneration: Pathogenesis, pathology and pathways to phenotype. Brain Pathol 2017; DOI: 10.1111/bpa.12486.
  • 75 Rascovsky K, Hodges JR, Knopman D. , et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011; 134 (Pt 9): 2456-2477 . Doi: 10.1093/brain/awr179
  • 76 Hogan DB, Jetté N, Fiest KM. , et al. The Prevalence and Incidence of Frontotemporal Dementia: a Systematic Review. Can J Neurol Sci 2016; 43 (01) (Suppl. 01) S96-S109
  • 77 Seltman RE, Matthews BR. Frontotemporal lobar degeneration: epidemiology, pathology, diagnosis and management. CNS Drugs 2012; 26 (10) 841-870 . Doi: 10.2165/11640070-000000000-00000
  • 78 Knopman DS, Petersen RC, Edland SD, Cha RH, Rocca WA. The incidence of frontotemporal lobar degeneration in Rochester, Minnesota, 1990 through 1994. Neurology 2004; 62 (03) 506-508 http://www.ncbi.nlm.nih.gov/pubmed/14872045 Accessed March 22, 2017
  • 79 Snowden JS, Neary D, Mann DMA. Frontotemporal dementia. Br J Psychiatry 2002; 180: 140-143 http://www.ncbi.nlm.nih.gov/pubmed/11823324 . Accessed March 22, 2017
  • 80 Lanata SC, Miller BL. The behavioural variant frontotemporal dementia (bvFTD) syndrome in psychiatry. J Neurol Neurosurg Psychiatry 2016; 87 (05) 501-511 . Doi: 10.1136/jnnp-2015-310697.The
  • 81 Lu PH, Mendez MF, Lee GJ. , et al. Patterns of brain atrophy in clinical variants of frontotemporal lobar degeneration. Dement Geriatr Cogn Disord 2013; 35 (1-2): 34-50
  • 82 Suárez J, Tartaglia MC, Vitali P. , et al. Characterizing radiology reports in patients with frontotemporal dementia. Neurology 2009; 73 (13) 1073-1074 . Doi: 10.1212/WNL.0b013e3181b9c8a6
  • 83 Schroeter ML, Raczka K, Neumann J, Yves von Cramon D. Towards a nosology for frontotemporal lobar degenerations-a meta-analysis involving 267 subjects. Neuroimage 2007; 36 (03) 497-510 . Doi: 10.1016/j.neuroimage.2007.03.024
  • 84 Pressman PS, Miller BL. Diagnosis and management of behavioral variant frontotemporal dementia. Biol Psychiatry 2014; 75 (07) 574-581 . Doi: 10.1016/j.biopsych.2013.11.006
  • 85 Cardenas VA, Boxer AL, Chao LL. , et al. Deformation-based morphometry reveals brain atrophy in frontotemporal dementia. Arch Neurol 2007; 64 (06) 873-877 . Doi: 10.1001/archneur.64.6.873
  • 86 Rohrer JD, Rosen HJ. Neuroimaging in frontotemporal dementia. Int Rev Psychiatry 2013; 25 (02) 221-229 . Doi: 10.3109/09540261.2013.778822
  • 87 Murray ME, Kouri N, Lin W-L, Jack Jr CR, Dickson DW, Vemuri P. Clinicopathologic assessment and imaging of tauopathies in neurodegenerative dementias. Alzheimers Res Ther 2014; 6 (01) 1 . Doi: 10.1186/alzrt231
  • 88 Rankin KP, Mayo MC, Seeley WW. , et al. Behavioral variant frontotemporal dementia with corticobasal degeneration pathology: phenotypic comparison to bvFTD with Pick's disease. J Mol Neurosci 2011; 45 (03) 594-608 . Doi: 10.1007/s12031-011-9615-2
  • 89 Perry DC, Rosen HJ. Frontotemporal dementia. In: Geschwind MD, Racine Belkoura C. , eds. Non-Alzheimer's and Atypical Dementia . West Sussex, UK: John Wiley & Sons, Ltd; 2016: 49-63 . doi:10.1016/j.lpm.2007.04.023
  • 90 Lee SE, Seeley WW, Poorzand P. , et al. Clinical characterization of bvFTD due to FUS neuropathology. Neurocase 2012; 18 (04) 305-317 . Doi: 10.1080/13554794.2011.604637
  • 91 Josephs KA, Whitwell JL, Parisi JE. , et al. Caudate atrophy on MRI is a characteristic feature of FTLD-FUS. Eur J Neurol 2010; 17 (07) 969-975 . Doi: 10.1111/j.1468-1331.2010.02975.x
  • 92 Snowden JS, Hu Q, Rollinson S. , et al. The most common type of FTLD-FUS (aFTLD-U) is associated with a distinct clinical form of frontotemporal dementia but is not related to mutations in the FUS gene. Acta Neuropathol 2011; 122 (01) 99-110 . Doi: 10.1007/s00401-011-0816-0
  • 93 Sha SJ, Takada LT, Rankin KP. , et al. Frontotemporal dementia due to C9ORF72 mutations: clinical and imaging features. Neurology 2012; 79 (10) 1002-1011 . Doi: 10.1212/WNL.0b013e318268452e
  • 94 Snowden JS, Rollinson S, Thompson JC. , et al. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 2012; 135 (Pt 3): 693-708 . Doi: 10.1093/brain/awr355
  • 95 Bocchetta M, Cardoso MJ, Cash DM, Ourselin S, Warren JD, Rohrer JD. Patterns of regional cerebellar atrophy in genetic frontotemporal dementia. Neuroimage Clin 2016; 11: 287-290 . Doi: 10.1016/j.nicl.2016.02.008
  • 96 van Swieten JC, Heutink P. Mutations in progranulin (GRN) within the spectrum of clinical and pathological phenotypes of frontotemporal dementia. Lancet Neurol 2008; 7 (10) 965-974 . Doi: 10.1016/S1474-4422(08)70194-7
  • 97 Rohrer JD, Warren JD. Phenotypic signatures of genetic frontotemporal dementia. Curr Opin Neurol 2011; 24 (06) 542-549 . Doi: 10.1097/WCO.0b013e32834cd442
  • 98 Whitwell JL, Boeve BF, Weigand SD. , et al. Brain atrophy over time in genetic and sporadic frontotemporal dementia: a study of 198 serial magnetic resonance images. Eur J Neurol 2015; 22 (05) 745-752 . Doi: 10.1111/ene.12675
  • 99 Snowden JS, Adams J, Harris J. , et al. Distinct clinical and pathological phenotypes in frontotemporal dementia associated with MAPT, PGRN and C9orf72 mutations. Amyotroph Lateral Scler Frontotemporal Degener 2015; 16 (7-8): 497-505 . Doi: 10.3109/21678421.2015.1074700
  • 100 Whitwell JL, Jack Jr CR, Boeve BF. , et al. Atrophy patterns in IVS10+16, IVS10+3, N279K, S305N, P301L, and V337M MAPT mutations. Neurology 2009; 73 (13) 1058-1065 . Doi: 10.1212/WNL.0b013e3181b9c8b9
  • 101 Blair IP, Williams KL, Warraich ST. , et al. FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis. J Neurol Neurosurg Psychiatry 2010; 81 (06) 639-645 . Doi: 10.1136/jnnp.2009.194399
  • 102 Chao LL, Schuff N, Clevenger EM. , et al. Patterns of white matter atrophy in frontotemporal lobar degeneration. Arch Neurol 2007; 64 (11) 1619-1624 . Doi: 10.1001/archneur.64.11.1619
  • 103 Daianu M, Mendez MF, Baboyan VG. , et al. An advanced white matter tract analysis in frontotemporal dementia and early-onset Alzheimer's disease. Brain Imaging Behav 2016; 10 (04) 1038-1053 . Doi: 10.1007/s11682-015-9458-5
  • 104 Mahoney CJA, Simpson IJ, Nicholas JM. , et al. Longitudinal diffusion tensor imaging in frontotemporal dementia. Ann Neurol 2015; 77 (01) 33-46
  • 105 Möller C, Hafkemeijer A, Pijnenburg YALL. , et al. Joint assessment of white matter integrity, cortical and subcortical atrophy to distinguish AD from behavioral variant FTD: a two-center study. Neuroimage Clin 2015; 9: 418-429
  • 106 Tosun D, Schuff N, Rabinovici GD. , et al. Diagnostic utility of ASL-MRI and FDG-PET in the behavioral variant of FTD and AD. Ann Clin Transl Neurol 2016; 3 (10) 740-751 . Doi: 10.1002/acn3.330
  • 107 Vijverberg EGB, Wattjes MP, Dols A. , et al. Diagnostic Accuracy of MRI and Additional [18F]FDG-PET for Behavioral Variant Frontotemporal Dementia in Patients with Late Onset Behavioral Changes. J Alzheimers Dis 2016; 53 (04) 1287-1297 . Doi: 10.3233/JAD-160285
  • 108 Woodward MC, Rowe CC, Jones G, Villemagne VL, Varos TA. Differentiating the frontal presentation of Alzheimer's disease with FDG-PET. J Alzheimers Dis 2015; 44 (01) 233-242 . Doi: 10.3233/JAD-141110
  • 109 Spina S, Schonhaut DR, Boeve BF. , et al. Frontotemporal dementia with the V337M MAPT mutation: Tau-PET and pathology correlations. Neurology 2017; 88 (08) 758-766 . Doi: 10.1212/WNL.0000000000003636
  • 110 Smith R, Puschmann A, Schöll M. , et al. 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers. Brain 2016; 139 (Pt 9): 2372-2379 . Doi: 10.1093/brain/aww163
  • 111 Bevan Jones WR, Cope TE, Passamonti L. , et al. [(18)F]AV-1451 PET in behavioral variant frontotemporal dementia due to MAPT mutation. Ann Clin Transl Neurol 2016; 3 (12) 940-947 . Doi: 10.1002/acn3.366
  • 112 Ng KP, Pascoal TA, Mathotaarachchi S. , et al. Monoamine oxidase B inhibitor, selegiline, reduces (18)F-THK5351 uptake in the human brain. Alzheimers Res Ther 2017; 9 (01) 25 . Doi: 10.1186/s13195-017-0253-y
  • 113 Armstrong MJ, Litvan I, Lang AE. , et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 2013; 80 (05) 496-503 . Doi: 10.1212/WNL.0b013e31827f0fd1
  • 114 Kertesz A, Martinez-Lage P, Davidson W, Munoz DG. The corticobasal degeneration syndrome overlaps progressive aphasia and frontotemporal dementia. Neurology 2000; 55 (09) 1368-1375 http://www.ncbi.nlm.nih.gov/pubmed/11087783 Accessed March 1, 2017
  • 115 Dutt S, Binney RJ, Heuer HW. , et al; AL-108-231 investigators. Progression of brain atrophy in PSP and CBS over 6 months and 1 year. Neurology 2016; 87 (19) 2016-2025 . Doi: 10.1212/WNL.0000000000003305
  • 116 Kouri N, Whitwell JL, Josephs KA, Rademakers R, Dickson DW. Corticobasal degeneration: a pathologically distinct 4R tauopathy. Nat Rev Neurol 2011; 7 (05) 263-272 . Doi: 10.1038/nrneurol.2011.43
  • 117 Josephs KA, Petersen RC, Knopman DS. , et al. Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology 2006; 66 (01) 41-48 . Doi: 10.1212/01.wnl.0000191307.69661.c3
  • 118 Whitwell JL, Jack Jr CR, Boeve BF. , et al. Imaging correlates of pathology in corticobasal syndrome. Neurology 2010; 75 (21) 1879-1887 . Doi: 10.1212/WNL.0b013e3181feb2e8
  • 119 Kobylecki C, Jones M, Thompson JC. , et al. Cognitive-behavioural features of progressive supranuclear palsy syndrome overlap with frontotemporal dementia. J Neurol 2015; 262 (04) 916-922 . Doi: 10.1007/s00415-015-7657-z
  • 120 Shi HC, Zhong JG, Pan PL. , et al. Gray matter atrophy in progressive supranuclear palsy: meta-analysis of voxel-based morphometry studies. Neurol Sci 2013; 34 (07) 1049-1055 . Doi: 10.1007/s10072-013-1406-9
  • 121 Josephs KA, Whitwell JL, Dickson DW. , et al. Voxel-based morphometry in autopsy proven PSP and CBD. Neurobiol Aging 2008; 29 (02) 280-289 . Doi: 10.1016/j.neurobiolaging.2006.09.019
  • 122 Nicoletti G, Caligiuri ME, Cherubini A. , et al. A Fully Automated, Atlas-Based Approach for Superior Cerebellar Peduncle Evaluation in Progressive Supranuclear Palsy Phenotypes. AJNR Am J Neuroradiol 2017; 38 (03) 523-530 . Doi: 10.3174/ajnr.A5048
  • 123 Tsai RM, Lobach I, Bang J. , et al; AL-108-231 Investigators. Clinical correlates of longitudinal brain atrophy in progressive supranuclear palsy. Parkinsonism Relat Disord 2016; 28: 29-35 . Doi: 10.1016/j.parkreldis.2016.04.006
  • 124 Kim YE, Kang SY, Ma H-I, Ju Y-S, Kim YJ. A Visual Rating Scale for the Hummingbird Sign with Adjustable Diagnostic Validity. J Parkinsons Dis 2015; 5 (03) 605-612 . Doi: 10.3233/JPD-150537
  • 125 Worker A, Blain C, Jarosz J. , et al. Diffusion Tensor Imaging of Parkinson's Disease, Multiple System Atrophy and Progressive Supranuclear Palsy: A Tract-Based Spatial Statistics Study. Kassubek J, ed. PLoS One 2014; 9 (11) e112638 . doi:10.1371/journal.pone.0112638
  • 126 Agosta F, Galantucci S, Svetel M. , et al. Clinical, cognitive, and behavioural correlates of white matter damage in progressive supranuclear palsy. J Neurol 2014; 261 (05) 913-924
  • 127 Whitwell JL, Avula R, Master A. , et al. Disrupted thalamocortical connectivity in PSP: a resting-state fMRI, DTI, and VBM study. Parkinsonism Relat Disord 2011; 17 (08) 599-605 . Doi: 10.1016/j.parkreldis.2011.05.013
  • 128 Quattrone A, Nicoletti G, Messina D. , et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology 2008; 246 (01) 214-221 . Doi: 10.1148/radiol.2453061703
  • 129 Kim BC, Choi S-M, Choi K-H. , et al. MRI measurements of brainstem structures in patients with vascular parkinsonism, progressive supranuclear palsy, and Parkinson's disease. Neurol Sci 2017; 38 (04) 627-633 . Doi: 10.1007/s10072-017-2812-1
  • 130 Nigro S, Arabia G, Antonini A. , et al. Magnetic Resonance Parkinsonism Index: diagnostic accuracy of a fully automated algorithm in comparison with the manual measurement in a large Italian multicentre study in patients with progressive supranuclear palsy. Eur Radiol 2017; 27 (06) 2665-2675 . Doi: 10.1007/s00330-016-4622-x
  • 131 Tipton PW, Konno T, Broderick DF, Dickson DW, Wszolek ZK. Cerebral peduncle angle: unreliable in differentiating progressive supranuclear palsy from other neurodegenerative diseases. Parkinsonism Relat Disord 2016; 32: 31-35 . Doi: 10.1016/j.parkreldis.2016.08.009
  • 132 Smith R, Schain M, Nilsson C. , et al. Increased basal ganglia binding of (18) F-AV-1451 in patients with progressive supranuclear palsy. Mov Disord 2017; 32 (01) 108-114 . Doi: 10.1002/mds.26813
  • 133 Cho H, Choi JY, Hwang MS. , et al. Subcortical (18) F-AV-1451 binding patterns in progressive supranuclear palsy. Mov Disord 2017; 32 (01) 134-140 . Doi: 10.1002/mds.26844
  • 134 Passamonti L, Vázquez Rodríguez P, Hong YT. , et al. 18F-AV-1451 positron emission tomography in Alzheimer's disease and progressive supranuclear palsy. Brain 2017; 140 (03) 781-791 . Doi: 10.1093/brain/aww340
  • 135 Coakeley S, Cho SS, Koshimori Y. , et al. Positron emission tomography imaging of tau pathology in progressive supranuclear palsy. J Cereb Blood Flow Metab 2017; 37 (09) 3150-3160
  • 136 Marquié M, Normandin MD, Meltzer AC. , et al. Pathological correlations of [F-18]-AV-1451 imaging in non-alzheimer tauopathies. Ann Neurol 2017; 81 (01) 117-128 . Doi: 10.1002/ana.24844
  • 137 Gorno-Tempini ML, Hillis AE, Weintraub S. , et al. Classification of primary progressive aphasia and its variants. Neurology 2011; 76 (11) 1006-1014 . Doi: 10.1212/WNL.0b013e31821103e6
  • 138 Spinelli EG, Mandelli ML. , et al. Typical and atypical pathology in primary progressive aphasia variants. Ann Neurol 2017; 81: 430-443
  • 139 Santos-Santos MA, Mandelli ML, Binney RJ. , et al. Features of Patients With Nonfluent/Agrammatic Primary Progressive Aphasia With Underlying Progressive Supranuclear Palsy Pathology or Corticobasal Degeneration. JAMA Neurol 2016; 73 (06) 733-742 . Doi: 10.1001/jamaneurol.2016.0412
  • 140 Spinelli EG, Mandelli ML, Miller ZA. , et al. Typical and atypical pathology in primary progressive aphasia variants. Ann Neurol 2017; 81 (03) 430-443 . Doi: 10.1002/ana.24885
  • 141 Harris JM, Gall C, Thompson JC. , et al. Classification and pathology of primary progressive aphasia. Neurology 2013; 81 (21) 1832-1839 . Doi: 10.1212/01.wnl.0000436070.28137.7b
  • 142 Rabinovici GD, Jagust WJ, Furst AJ. , et al. Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann Neurol 2008; 64 (04) 388-401 . Doi: 10.1002/ana.21451
  • 143 Bisenius S, Mueller K, Diehl-Schmid J. , et al; FTLDc study group. Predicting primary progressive aphasias with support vector machine approaches in structural MRI data. Neuroimage Clin 2017; 14: 334-343
  • 144 Rohrer JD, Warren JD, Modat M. , et al. Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration. Neurology 2009; 72 (18) 1562-1569 . Doi: 10.1212/WNL.0b013e3181a4124e
  • 145 Brambati SM, Rankin KP, Narvid J. , et al. Atrophy progression in semantic dementia with asymmetric temporal involvement: a tensor-based morphometry study. Neurobiol Aging 2009; 30 (01) 103-111 . Doi: 10.1016/j.neurobiolaging.2007.05.014
  • 146 Brambati SM, Amici S, Racine CA. , et al. Longitudinal gray matter contraction in three variants of primary progressive aphasia: a tenser-based morphometry study. Neuroimage Clin 2015; 8: 345-355 . Doi: 10.1016/j.nicl.2015.01.011
  • 147 Rogalski E, Cobia D, Harrison TM, Wieneke C, Weintraub S, Mesulam M-M. Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. Neurology 2011; 76 (21) 1804-1810 . Doi: 10.1212/WNL.0b013e31821ccd3c
  • 148 Gorno-Tempini ML, Murray RC, Rankin KP, Weiner MW, Miller BL. Clinical, cognitive and anatomical evolution from nonfluent progressive aphasia to corticobasal syndrome: a case report. Neurocase 2004; 10 (06) 426-436 . Doi: 10.1080/13554790490894011
  • 149 Greicius MD, Kimmel DL. Neuroimaging insights into network-based neurodegeneration. Curr Opin Neurol 2012; 25 (06) 727-734 . Doi: 10.1097/WCO.0b013e32835a26b3
  • 150 Whitwell JL, Duffy JR, Strand EA. , et al. Clinical and neuroimaging biomarkers of amyloid-negative logopenic primary progressive aphasia. Brain Lang 2015; 142: 45-53 . Doi: 10.1016/j.bandl.2015.01.009
  • 151 Matías-Guiu JA, Cabrera-Martín MN, Moreno-Ramos T. , et al. Amyloid and FDG-PET study of logopenic primary progressive aphasia: evidence for the existence of two subtypes. J Neurol 2015; 262 (06) 1463-1472 . Doi: 10.1007/s00415-015-7738-z
  • 152 Mahoney CJ, Downey LE, Ridgway GR. , et al. Longitudinal neuroimaging and neuropsychological profiles of frontotemporal dementia with C9ORF72 expansions. Alzheimers Res Ther 2012; 4 (05) 41 . Doi: 10.1186/alzrt144
  • 153 Agosta F, Scola E, Canu E. , et al. White matter damage in frontotemporal lobar degeneration spectrum. Cereb Cortex 2012; 22 (12) 2705-2714 . Doi: 10.1093/cercor/bhr288
  • 154 Agosta F, Galantucci S, Magnani G. , et al. MRI signatures of the frontotemporal lobar degeneration continuum. Hum Brain Mapp 2015; 36 (07) 2602-2614 . Doi: 10.1002/hbm.22794
  • 155 Schwindt GC, Graham NL, Rochon E. , et al. Whole-brain white matter disruption in semantic and nonfluent variants of primary progressive aphasia. Hum Brain Mapp 2013; 34 (04) 973-984 . Doi: 10.1002/hbm.21484
  • 156 Mandelli ML, Caverzasi E, Binney RJ. , et al. Frontal white matter tracts sustaining speech production in primary progressive aphasia. J Neurosci 2014; 34 (29) 9754-9767 . Doi: 10.1523/JNEUROSCI.3464-13.2014
  • 157 Charles D, Olm C, Powers J. , et al. Grammatical comprehension deficits in non-fluent/agrammatic primary progressive aphasia. J Neurol Neurosurg Psychiatry 2014; 85 (03) 249-256 . Doi: 10.1136/jnnp-2013-305749
  • 158 D'Anna L, Mesulam MM, Thiebaut de Schotten M. , et al. Frontotemporal networks and behavioral symptoms in primary progressive aphasia. Neurology 2016; 86 (15) 1393-1399 . Doi: 10.1212/WNL.0000000000002579
  • 159 Tu S, Leyton CE, Hodges JR, Piguet O, Hornberger M. Divergent Longitudinal Propagation of White Matter Degradation in Logopenic and Semantic Variants of Primary Progressive Aphasia. J Alzheimer's Dis 2015; 49 (03) 853-861 . doi:10.3233/JAD-150626
  • 160 Mahoney CJ, Malone IB, Ridgway GR. , et al. White matter tract signatures of the progressive aphasias. Neurobiol Aging 2013; 34 (06) 1687-1699 . Doi: 10.1016/j.neurobiolaging.2012.12.002
  • 161 Agosta F, Ferraro PM, Canu E. , et al. Differentiation between Subtypes of Primary Progressive Aphasia by Using Cortical Thickness and Diffusion-Tensor MR Imaging Measures. Radiology 2015; 276 (01) 219-227 . Doi: 10.1148/radiol.15141869
  • 162 McKeith IG. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop. J Alzheimers Dis 2006; 9 (3, Suppl) 417-423
  • 163 Aarsland D, Rongve A, Nore SP. , et al. Frequency and case identification of dementia with Lewy bodies using the revised consensus criteria. Dement Geriatr Cogn Disord 2008; 26 (05) 445-452 . Doi: 10.1159/000165917
  • 164 Hogan DB, Fiest KM, Roberts JI. , et al. The Prevalence and Incidence of Dementia with Lewy Bodies: a Systematic Review. Can J Neurol Sci 2016; 43 (Suppl. 01) S83-S95 . Doi: 10.1017/cjn.2016.2
  • 165 Gomperts SN. Lewy Body Dementias: Dementia With Lewy Bodies and Parkinson Disease Dementia. Continuum (Minneap Minn) 2016; 22 (2 Dementia): 435-463
  • 166 Borroni B, Premi E, Formenti A. , et al. Structural and functional imaging study in dementia with Lewy bodies and Parkinson's disease dementia. Parkinsonism Relat Disord 2015; 21 (09) 1049-1055 . Doi: 10.1016/j.parkreldis.2015.06.013
  • 167 Ballard C, Ziabreva I, Perry R. , et al. Differences in neuropathologic characteristics across the Lewy body dementia spectrum. Neurology 2006; 67 (11) 1931-1934 . Doi: 10.1212/01.wnl.0000249130.63615.cc
  • 168 Emre M. What causes mental dysfunction in Parkinson's disease?. Mov Disord 2003; 18 (Suppl. 06) S63-S71 . Doi: 10.1002/mds.10565
  • 169 Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 2007; 69 (24) 2197-2204 . Doi: 10.1212/01.wnl.0000271090.28148.24
  • 170 Barker WW, Luis CA, Kashuba A. , et al. Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank. Alzheimer Dis Assoc Disord 2002; 16 (04) 203-212
  • 171 Walker L, McAleese KE, Thomas AJ. , et al. Neuropathologically mixed Alzheimer's and Lewy body disease: burden of pathological protein aggregates differs between clinical phenotypes. Acta Neuropathol 2015; 129 (05) 729-748 . Doi: 10.1007/s00401-015-1406-3
  • 172 Kraybill ML, Larson EB, Tsuang DW. , et al. Cognitive differences in dementia patients with autopsy-verified AD, Lewy body pathology, or both. Neurology 2005; 64 (12) 2069-2073 . Doi: 10.1212/01.WNL.0000165987.89198.65
  • 173 Irwin DJ, Grossman M, Weintraub D. , et al. Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis. Lancet Neurol 2017; 16 (01) 55-65 . Doi: 10.1016/S1474-4422(16)30291-5
  • 174 Nedelska Z, Ferman TJ, Boeve BF. , et al. Pattern of brain atrophy rates in autopsy-confirmed dementia with Lewy bodies. Neurobiol Aging 2015; 36 (01) 452-461 . Doi: 10.1016/j.neurobiolaging.2014.07.005
  • 175 Zhong J, Pan P, Dai Z, Shi H. Voxelwise meta-analysis of gray matter abnormalities in dementia with Lewy bodies. Eur J Radiol 2014; 83 (10) 1870-1874 . Doi: 10.1016/j.ejrad.2014.06.014
  • 176 Watson R, O'Brien JT, Barber R, Blamire AM. Patterns of gray matter atrophy in dementia with Lewy bodies: a voxel-based morphometry study. Int Psychogeriatr 2012; 24 (04) 532-540 . Doi: 10.1017/S1041610211002171
  • 177 Burton EJ, Karas G, Paling SM. , et al. Patterns of cerebral atrophy in dementia with Lewy bodies using voxel-based morphometry. Neuroimage 2002; 17 (02) 618-630
  • 178 Whitwell JL, Weigand SD, Shiung MM. , et al. Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer's disease. Brain 2007; 130 (Pt 3): 708-719 . Doi: 10.1093/brain/awl388
  • 179 Brenneis C, Wenning GK, Egger KE. , et al. Basal forebrain atrophy is a distinctive pattern in dementia with Lewy bodies. Neuroreport 2004; 15 (11) 1711-1714
  • 180 Pan PL, Shi HC, Zhong JG. , et al. Gray matter atrophy in Parkinson's disease with dementia: evidence from meta-analysis of voxel-based morphometry studies. Neurol Sci 2013; 34 (05) 613-619 . Doi: 10.1007/s10072-012-1250-3
  • 181 Burton EJ, McKeith IG, Burn DJ, Williams ED, O'Brien JT. Cerebral atrophy in Parkinson's disease with and without dementia: a comparison with Alzheimer's disease, dementia with Lewy bodies and controls. Brain 2004; 127 (Pt 4): 791-800 . Doi: 10.1093/brain/awh088
  • 182 Beyer MK, Larsen JP, Aarsland D. Gray matter atrophy in Parkinson disease with dementia and dementia with Lewy bodies. Neurology 2007; 69 (08) 747-754 . Doi: 10.1212/01.wnl.0000269666.62598.1c
  • 183 Tam CWC, Burton EJ, McKeith IG, Burn DJ, O'Brien JT. Temporal lobe atrophy on MRI in Parkinson disease with dementia: a comparison with Alzheimer disease and dementia with Lewy bodies. Neurology 2005; 64 (05) 861-865 . Doi: 10.1212/01.WNL.0000153070.82309.D4
  • 184 Kenny ER, Burton EJ, O'Brien JT. A volumetric magnetic resonance imaging study of entorhinal cortex volume in dementia with lewy bodies. A comparison with Alzheimer's disease and Parkinson's disease with and without dementia. Dement Geriatr Cogn Disord 2008; 26 (03) 218-225 . Doi: 10.1159/000153432
  • 185 Burton EJ, McKeith IG, Burn DJ, O'Brien JT. Brain atrophy rates in Parkinson's disease with and without dementia using serial magnetic resonance imaging. Mov Disord 2005; 20 (12) 1571-1576 . Doi: 10.1002/mds.20652
  • 186 Summerfield C, Junqué C, Tolosa E. , et al. Structural brain changes in Parkinson disease with dementia: a voxel-based morphometry study. Arch Neurol 2005; 62 (02) 281-285 . Doi: 10.1001/archneur.62.2.281
  • 187 Cochrane CJ, Ebmeier KP. Diffusion tensor imaging in parkinsonian syndromes: a systematic review and meta-analysis. Neurology 2013; 80 (09) 857-864 . Doi: 10.1212/WNL.0b013e318284070c
  • 188 Watson R, Blamire AM, Colloby SJ. , et al. Characterizing dementia with Lewy bodies by means of diffusion tensor imaging. Neurology 2012; 79 (09) 906-914 . Doi: 10.1212/WNL.0b013e318266fc51
  • 189 Kiuchi K, Morikawa M, Taoka T. , et al. White matter changes in dementia with Lewy bodies and Alzheimer's disease: a tractography-based study. J Psychiatr Res 2011; 45 (08) 1095-1100 . Doi: 10.1016/j.jpsychires.2011.01.011
  • 190 Nedelska Z, Schwarz CG, Boeve BF. , et al. White matter integrity in dementia with Lewy bodies: a voxel-based analysis of diffusion tensor imaging. Neurobiol Aging 2015; 36 (06) 2010-2017 . Doi: 10.1016/j.neurobiolaging.2015.03.007
  • 191 Chen B, Fan GG, Liu H, Wang S. Changes in anatomical and functional connectivity of Parkinson's disease patients according to cognitive status. Eur J Radiol 2015; 84 (07) 1318-1324 . Doi: 10.1016/j.ejrad.2015.04.014
  • 192 Perea RD, Rada RC, Wilson J. , et al. A Comparative White Matter Study with Parkinson's disease, Parkinson's Disease with Dementia and Alzheimer's Disease. J Alzheimer's Dis Park 2013; 3: 123 . Doi: 10.4172/2161-0460.1000123
  • 193 Kamagata K, Motoi Y, Tomiyama H. , et al. Relationship between cognitive impairment and white-matter alteration in Parkinson's disease with dementia: tract-based spatial statistics and tract-specific analysis. Eur Radiol 2013; 23 (07) 1946-1955 . Doi: 10.1007/s00330-013-2775-4
  • 194 Booij J, Tissingh G, Boer GJ. , et al. [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson's disease. J Neurol Neurosurg Psychiatry 1997; 62 (02) 133-140 http://www.ncbi.nlm.nih.gov/pubmed/9048712 Accessed June 22, 2017
  • 195 Del Sole A, Perini G, Lecchi M, Mariani C, Lucignani G, Clerici F. Correlation between 123I-FP-CIT brain SPECT and parkinsonism in dementia with Lewy bodies: caveat for clinical use. Clin Nucl Med 2015; 40 (01) 32-35 . Doi: 10.1097/RLU.0000000000000602
  • 196 Walker Z, Jaros E, Walker RWH. , et al. Dementia with Lewy bodies: a comparison of clinical diagnosis, FP-CIT single photon emission computed tomography imaging and autopsy. J Neurol Neurosurg Psychiatry 2007; 78 (11) 1176-1181 . Doi: 10.1136/jnnp.2006.110122
  • 197 Papathanasiou ND, Boutsiadis A, Dickson J, Bomanji JB. Diagnostic accuracy of 123I-FP-CIT (DaTSCAN) in dementia with Lewy bodies: a meta-analysis of published studies. Parkinsonism Relat Disord 2012; 18 (03) 225-229 . Doi: 10.1016/j.parkreldis.2011.09.015
  • 198 Siepel FJ, Rongve A, Buter TC. , et al. (123I)FP-CIT SPECT in suspected dementia with Lewy bodies: a longitudinal case study. BMJ Open 2013; 3 (04) e002642 . Doi: 10.1136/bmjopen-2013-002642
  • 199 van der Zande JJ, Booij J, Scheltens P, Raijmakers PGHM, Lemstra AW. [(123)]FP-CIT SPECT scans initially rated as normal became abnormal over time in patients with probable dementia with Lewy bodies. Eur J Nucl Med Mol Imaging 2016; 43 (06) 1060-1066 . Doi: 10.1007/s00259-016-3312-x
  • 200 O'Brien JT, Colloby S, Fenwick J. , et al. Dopamine transporter loss visualized with FP-CIT SPECT in the differential diagnosis of dementia with Lewy bodies. Arch Neurol 2004; 61 (06) 919-925 . Doi: 10.1001/archneur.61.6.919
  • 201 Kantarci K, Lowe VJ, Boeve BF. , et al. Multimodality imaging characteristics of dementia with Lewy bodies. Neurobiol Aging 2012; 33 (09) 2091-2105 . Doi: 10.1016/j.neurobiolaging.2011.09.024
  • 202 Gilman S, Koeppe RA, Little R. , et al. Differentiation of Alzheimer's disease from dementia with Lewy bodies utilizing positron emission tomography with [18F]fluorodeoxyglucose and neuropsychological testing. Exp Neurol 2005; 191 (Suppl. 01) S95-S103 . Doi: 10.1016/j.expneurol.2004.06.017
  • 203 Pagano G, Niccolini F, Politis M. Imaging in Parkinson's disease. Clin Med (Lond) 2016; 16 (04) 371-375 . Doi: 10.7861/clinmedicine.16-4-371 (Northfield Il)
  • 204 Zhang X, Jin H, Padakanti PK. , et al. Radiosynthesis and in Vivo Evaluation of Two PET Radioligands for Imaging α-Synuclein. Appl Sci (Basel) 2014; 4 (01) 66-78 . Doi: 10.3390/app4010066
  • 205 Geschwind MD. Rapidly Progressive Dementia. Continuum (Minneap Minn) 2016; 22 (2 Dementia): 510-537
  • 206 Mead S, Rudge P. CJD mimics and chameleons. Pract Neurol 2017; 17 (02) 113-121
  • 207 Masters CL, Harris JO, Gajdusek DC, Gibbs Jr CJ, Bernoulli C, Asher DM. Creutzfeldt-Jakob disease: patterns of worldwide occurrence and the significance of familial and sporadic clustering. Ann Neurol 1979; 5 (02) 177-188 . Doi: 10.1002/ana.410050212
  • 208 Kovács GG, Puopolo M, Ladogana A. , et al; EUROCJD. Genetic prion disease: the EUROCJD experience. Hum Genet 2005; 118 (02) 166-174 . Doi: 10.1007/s00439-005-0020-1
  • 209 Ladogana A, Puopolo M, Poleggi A. , et al. High incidence of genetic human transmissible spongiform encephalopathies in Italy. Neurology 2005; 64 (09) 1592-1597 . Doi: 10.1212/01.WNL.0000160118.26865.11
  • 210 Takada LT, Kim M-O, Cleveland RW. , et al. Genetic prion disease: experience of a rapidly progressive dementia center in the United States and a review of the literature. Am J Med Genet B Neuropsychiatr Genet 2017; 174 (01) 36-69 . Doi: 10.1002/ajmg.b.32505
  • 211 Kretzschmar HA, Ironside JW, DeArmond SJ, Tateishi J. Diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Arch Neurol 1996; 53 (09) 913-920 http://www.ncbi.nlm.nih.gov/pubmed/8815857 Accessed June 22, 2017
  • 212 Geschwind MD. Prion Diseases. Continuum (Minneap Minn) 2015; 21 (6 Neuroinfectious Disease): 1612-1638
  • 213 Wang LH, Bucelli RC, Patrick E. , et al. Role of magnetic resonance imaging, cerebrospinal fluid, and electroencephalogram in diagnosis of sporadic Creutzfeldt-Jakob disease. J Neurol 2013; 260 (02) 498-506 . Doi: 10.1007/s00415-012-6664-6
  • 214 Carswell C, Thompson A, Lukic A. , et al. MRI findings are often missed in the diagnosis of Creutzfeldt-Jakob disease. BMC Neurol 2012; 12 (01) 153 . Doi: 10.1186/1471-2377-12-153
  • 215 Vitali P, MacCagnano E, Caverzasi E, Henry RG, Haman A, Torres-Chae C. , et al. Diffusion-weighted MRI hyperintensity patterns differentiate CJD from other rapid dementias. Neurology 2011; 76: 1711-1719
  • 216 Shiga Y, Miyazawa K, Sato S. , et al. Diffusion-weighted MRI abnormalities as an early diagnostic marker for Creutzfeldt-Jakob disease. Neurology 2004; 63 (03) 443-449 http://www.ncbi.nlm.nih.gov/pubmed/15304574 . Accessed June 22, 2017
  • 217 Young GS, Geschwind MD, Fischbein NJ. , et al. Diffusion-weighted and fluid-attenuated inversion recovery imaging in Creutzfeldt-Jakob disease: high sensitivity and specificity for diagnosis. AJNR Am J Neuroradiol 2005; 26 (06) 1551-1562 http://www.ncbi.nlm.nih.gov/pubmed/15956529 . Accessed June 22, 2017
  • 218 Puoti G, Bizzi A, Forloni G, Safar JG, Tagliavini F, Gambetti P. Sporadic human prion diseases: molecular insights and diagnosis. Lancet Neurol 2012; 11 (07) 618-628 . Doi: 10.1016/S1474-4422(12)70063-7
  • 219 Bongianni M, Orrù C, Groveman BR. , et al. Diagnosis of Human Prion Disease Using Real-Time Quaking-Induced Conversion Testing of Olfactory Mucosa and Cerebrospinal Fluid Samples. JAMA Neurol 2017; 74 (02) 155-162 . Doi: 10.1001/jamaneurol.2016.4614
  • 220 Jezzard P, Barnett AS, Pierpaoli C. Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magn Reson Med 1998; 39 (05) 801-812 http://www.ncbi.nlm.nih.gov/pubmed/9581612 Accessed June 22, 2017
  • 221 Kong A, Kleinig T, Van der Vliet A. , et al. MRI of sporadic Creutzfeldt-Jakob disease. J Med Imaging Radiat Oncol 2008; 52 (04) 318-324 . Doi: 10.1111/j.1440-1673.2008.01962.x
  • 222 Cali I, Castellani R, Yuan J. , et al. Classification of sporadic Creutzfeldt-Jakob disease revisited. Brain 2006; 129 (Pt 9): 2266-2277 . Doi: 10.1093/brain/awl224
  • 223 Meissner B, Kallenberg K, Sanchez-Juan P. , et al. MRI lesion profiles in sporadic Creutzfeldt-Jakob disease. Neurology 2009; 72 (23) 1994-2001 . Doi: 10.1212/WNL.0b013e3181a96e5d
  • 224 Caverzasi E, Henry RG, Vitali P. , et al. Application of quantitative DTI metrics in sporadic CJD. Neuroimage Clin 2014; 4: 426-435 . Doi: 10.1016/j.nicl.2014.01.011
  • 225 Caverzasi E, Mandelli ML, DeArmond SJ. , et al. White matter involvement in sporadic Creutzfeldt-Jakob disease. Brain 2014; 137 (Pt 12): 3339-3354 . Doi: 10.1093/brain/awu298
  • 226 Paoletti M, Caverzasi E, Mandelli ML. , et al. Sporadic Creutzfeld-Jacob Disease quantitative diffusion profiles and resting state functional correlates. In: ePoster Presented at International Society for Magnetic Resonance in Medicine Annual Meeting; 2017
  • 227 Rudge P, Jaunmuktane Z, Adlard P. , et al. Iatrogenic CJD due to pituitary-derived growth hormone with genetically determined incubation times of up to 40 years. Brain 2015; 138 (Pt 11): 3386-3399 . Doi: 10.1093/brain/awv235
  • 228 Lewis AM, Yu M, DeArmond SJ, Dillon WP, Miller BL, Geschwind MD. Human growth hormone-related iatrogenic Creutzfeldt-Jakob disease with abnormal imaging. Arch Neurol 2006; 63 (02) 288-290 . Doi: 10.1001/archneur.63.2.288
  • 229 Macfarlane RG, Wroe SJ, Collinge J, Yousry TA, Jäger HR. Neuroimaging findings in human prion disease. J Neurol Neurosurg Psychiatry 2007; 78 (07) 664-670 . Doi: 10.1136/jnnp.2006.094821
  • 230 Zeidler M, Sellar RJ, Collie DA. , et al. The pulvinar sign on magnetic resonance imaging in variant Creutzfeldt-Jakob disease. Lancet 2000; 355 (9213): 1412-1418 . Doi: 10.1016/s0140-6736(00)02140-1
  • 231 Haïk S, Brandel JP, Oppenheim C. , et al. Sporadic CJD clinically mimicking variant CJD with bilateral increased signal in the pulvinar. Neurology 2002; 58 (01) 148-149 http://www.ncbi.nlm.nih.gov/pubmed/11781427 Accessed June 22, 2017
  • 232 Martindale J, Geschwind MD, De Armond S. , et al. Sporadic Creutzfeldt-Jakob disease mimicking variant Creutzfeldt-Jakob disease. Arch Neurol 2003; 60 (05) 767-770 . Doi: 10.1001/archneur.60.5.767
  • 233 Breithaupt M, Romero C, Kallenberg K. , et al. Magnetic resonance imaging in E200K and V210I mutations of the prion protein gene. Alzheimer Dis Assoc Disord 2013; 27 (01) 87-90 . Doi: 10.1097/WAD.0b013e31824d578a
  • 234 Krasnianski A, Heinemann U, Ponto C. , et al. Clinical findings and diagnosis in genetic prion diseases in Germany. Eur J Epidemiol 2016; 31 (02) 187-196 . Doi: 10.1007/s10654-015-0049-y
  • 235 Krasnianski A, Bartl M, Sanchez Juan PJ. , et al. Fatal familial insomnia: clinical features and early identification. Ann Neurol 2008; 63 (05) 658-661 . Doi: 10.1002/ana.21358
  • 236 Shi Q, Zhou W, Chen C. , et al. The features of genetic prion diseases based on Chinese surveillance program. PLoS One 2015; 10 (10) e0139552 . Doi: 10.1371/journal.pone.0139552
  • 237 Singhal AB, Newstein MC, Budzik R. , et al. Diffusion-weighted magnetic resonance imaging abnormalities in Bartonella encephalopathy. J Neuroimaging 2003; 13 (01) 79-82 . Doi: 10.1177/1051228402239722
  • 238 Sener RN. Pantothenate kinase-associated neurodegeneration: MR imaging, proton MR spectroscopy, and diffusion MR imaging findings. Am J Neuroradiol 2003; 24: 1690-1693
  • 239 Halavaara J, Brander A, Lyytinen J, Setälä K, Kallela M. Wernicke's encephalopathy: is diffusion-weighted MRI useful?. Neuroradiology 2003; 45 (08) 519-523 . Doi: 10.1007/s00234-003-1043-8
  • 240 Weiss D, Brockmann K, Nägele T, Gasser T, Krüger R. Rapid emergence of temporal and pulvinar lesions in MELAS mimicking Creutzfeldt-Jakob disease. Neurology 2011; 77 (09) 914 . Doi: 10.1212/WNL.0b013e31822c6275
  • 241 Geschwind MD, Tan KM, Lennon VA. , et al. Voltage-gated potassium channel autoimmunity mimicking Creutzfeldt-Jakob disease. Arch Neurol 2008; 65 (10) 1341-1346 . Doi: 10.1001/archneur.65.10.1341
  • 242 Rosenbloom MH, Tartaglia MC, Forner SA. , et al. Metabolic disorders with clinical and radiologic features of sporadic Creutzfeldt-Jakob disease. Neurol Clin Pract 2015; 5 (02) 108-115 . Doi: 10.1212/CPJ.0000000000000114
  • 243 Chu K, Kang D-W, Kim J-Y, Chang K-H, Lee SK. Diffusion-weighted magnetic resonance imaging in nonconvulsive status epilepticus. Arch Neurol 2001; 58 (06) 993-998 . Doi: 10.1001/archneur.58.6.993
  • 244 Flanagan EP, Drubach DA, Boeve BF. Autoimmune Dementia and Encephalopathy. In: Pittok SJ, Vincent A. , eds. Handbook of clinical neurology. Netherlands: Elsevier; 2016: 247-267
  • 245 Misra UK, Kalita J, Phadke RV. , et al. Usefulness of various MRI sequences in the diagnosis of viral encephalitis. Acta Trop 2010; 116 (03) 206-211 . Doi: 10.1016/j.actatropica.2010.08.007
  • 246 Fugate JE, Claassen DO, Cloft HJ, Kallmes DF, Kozak OS, Rabinstein AA. Posterior reversible encephalopathy syndrome: associated clinical and radiologic findings. Mayo Clin Proc 2010; 85 (05) 427-432 . Doi: 10.4065/mcp.2009.0590
  • 247 Geschwind MD, Haman A, Miller BL. Rapidly progressive dementia. Neurol Clin 2007; 25 (03) 783-807 , vii. Doi: 10.1016/j.ncl.2007.04.001
  • 248 Hakim S, Adams RD. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci 1965; 2 (04) 307-327 . Doi: 10.1016/0022-510X(65)90016-X
  • 249 Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 2005; 57 (3, Suppl) S4-S16 , discussion ii–v
  • 250 Klinge P, Hellström P, Tans J, Wikkelsø C. ; European iNPH Multicentre Study Group. One-year outcome in the European multicentre study on iNPH. Acta Neurol Scand 2012; 126 (03) 145-153 . Doi: 10.1111/j.1600-0404.2012.01676.x
  • 251 Craven CL, Toma AK, Mostafa T, Patel N, Watkins LD. The predictive value of DESH for shunt responsiveness in idiopathic normal pressure hydrocephalus. J Clin Neurosci 2016; 34: 294-298 . Doi: 10.1016/j.jocn.2016.09.004
  • 252 Toma AK, Papadopoulos MC, Stapleton S, Kitchen ND, Watkins LD. Systematic review of the outcome of shunt surgery in idiopathic normal-pressure hydrocephalus. Acta Neurochir (Wien) 2013; 155 (10) 1977-1980 . Doi: 10.1007/s00701-013-1835-5
  • 253 Toma AK, Watkins LD. Surgical management of idiopathic normal pressure hydrocephalus: a trial of a trial. Br J Neurosurg 2016; 30 (06) 605 . Doi: 10.1080/02688697.2016.1229751
  • 254 Toma AK, Holl E, Kitchen ND, Watkins LD. Evans' index revisited: the need for an alternative in normal pressure hydrocephalus. Neurosurgery 2011; 68 (04) 939-944 . Doi: 10.1227/NEU.0b013e318208f5e0
  • 255 Ambarki K, Israelsson H, Wåhlin A, Birgander R, Eklund A, Malm J. Brain ventricular size in healthy elderly: comparison between Evans index and volume measurement. Neurosurgery 2010; 67 (01) 94-99 , discussion 99. Doi: 10.1227/01.NEU.0000370939.30003.D1
  • 256 García-Valdecasas-Campelo E, González-Reimers E, Santolaria-Fernández F. , et al. Brain atrophy in alcoholics: relationship with alcohol intake; liver disease; nutritional status, and inflammation. Alcohol Alcohol 2007; 42 (06) 533-538 . Doi: 10.1093/alcalc/agm065
  • 257 Brunberg JA, Jacquemont S, Hagerman RJ. , et al. Fragile X premutation carriers: characteristic MR imaging findings of adult male patients with progressive cerebellar and cognitive dysfunction. AJNR Am J Neuroradiol 2002; 23 (10) 1757-1766
  • 258 Ishii K, Soma T, Shimada K, Oda H, Terashima A, Kawasaki R. Automatic volumetry of the cerebrospinal fluid space in idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Dis Extra 2013; 3 (01) 489-496 . Doi: 10.1159/000357329
  • 259 Hashimoto M, Ishikawa M, Mori E, Kuwana N. ; Study of INPH on neurological improvement (SINPHONI). Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal Fluid Res 2010; 7 (01) 18 . Doi: 10.1186/1743-8454-7-18
  • 260 Krauss JK, Regel JP, Vach W, Jüngling FD, Droste DW, Wakhloo AK. Flow void of cerebrospinal fluid in idiopathic normal pressure hydrocephalus of the elderly: can it predict outcome after shunting?. Neurosurgery 1997; 40 (01) 67-73 , discussion 73–74
  • 261 Bradley Jr WG. CSF Flow in the Brain in the Context of Normal Pressure Hydrocephalus. AJNR Am J Neuroradiol 2015; 36 (05) 831-838 . Doi: 10.3174/ajnr.A4124
  • 262 Virhammar J, Laurell K, Cesarini KG, Larsson EM. Preoperative prognostic value of MRI findings in 108 patients with idiopathic normal pressure hydrocephalus. AJNR Am J Neuroradiol 2014; 35 (12) 2311-2318
  • 263 Del Bigio MR. Neuropathological changes caused by hydrocephalus. Acta Neuropathol 1993; 85 (06) 573-585 . Doi: 10.1007/BF00334666
  • 264 Tullberg M, Hultin L, Ekholm S, Månsson J-E, Fredman P, Wikkelsø C. White matter changes in normal pressure hydrocephalus and Binswanger disease: specificity, predictive value and correlations to axonal degeneration and demyelination. Acta Neurol Scand 2002; 105 (06) 417-426
  • 265 Marumoto K, Koyama T, Hosomi M, Kodama N, Miyake H, Domen K. Diffusion tensor imaging in elderly patients with idiopathic normal pressure hydrocephalus or Parkinson's disease: diagnosis of gait abnormalities. Fluids Barriers CNS 2012; 9 (01) 20 . Doi: 10.1186/2045-8118-9-20
  • 266 Hořínek D, Štěpán-Buksakowska I, Szabó N. , et al. Difference in white matter microstructure in differential diagnosis of normal pressure hydrocephalus and Alzheimer's disease. Clin Neurol Neurosurg 2016; 140: 52-59 . Doi: 10.1016/j.clineuro.2015.11.010
  • 267 Hoza D, Vlasák A, Hořínek D, Sameš M, Alfieri A. DTI-MRI biomarkers in the search for normal pressure hydrocephalus aetiology: a review. Neurosurg Rev 2015; 38 (02) 239-244 , discussion 244. Doi: 10.1007/s10143-014-0584-0
  • 268 Siasios I, Kapsalaki EZ, Fountas KN. , et al. The role of diffusion tensor imaging and fractional anisotropy in the evaluation of patients with idiopathic normal pressure hydrocephalus: a literature review. Neurosurg Focus 2016; 41 (03) E12 . Doi: 10.3171/2016.6.FOCUS16192
  • 269 Kim MJ, Seo SW, Lee KM. , et al. Differential diagnosis of idiopathic normal pressure hydrocephalus from other dementias using diffusion tensor imaging. AJNR Am J Neuroradiol 2011; 32 (08) 1496-1503 . Doi: 10.3174/ajnr.A2531
  • 270 Yamada S, Tsuchiya K, Bradley WG. , et al. Current and emerging MR imaging techniques for the diagnosis and management of CSF flow disorders: a review of phase-contrast and time-spatial labeling inversion pulse. AJNR Am J Neuroradiol 2015; 36 (04) 623-630 . Doi: 10.3174/ajnr.A4030
  • 271 Khoo HM, Kishima H, Tani N. , et al. Default mode network connectivity in patients with idiopathic normal pressure hydrocephalus. J Neurosurg 2016; 124 (02) 350-358 . Doi: 10.3171/2015.1.JNS141633
  • 272 Gilman S, Wenning GK, Low PA. , et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 2008; 71 (09) 670-676
  • 273 Joutsa J, Gardberg M, Röyttä M, Kaasinen V. Diagnostic accuracy of parkinsonism syndromes by general neurologists. Parkinsonism Relat Disord 2014; 20 (08) 840-844 . Doi: 10.1016/j.parkreldis.2014.04.019
  • 274 Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 2002; 125 (Pt 4): 861-870 http://www.ncbi.nlm.nih.gov/pubmed/11912118 Accessed June 6, 2017
  • 275 Bürk K, Skalej M, Dichgans J. Pontine MRI hyperintensities (“the cross sign”) are not pathognomonic for multiple system atrophy (MSA). Mov Disord 2001; 16 (03) 535 . Doi: 10.1002/mds.1107
  • 276 Abe K, Hikita T, Yokoe M, Mihara M, Sakoda S. The “cross” signs in patients with multiple system atrophy: a quantitative study. J Neuroimaging 2006; 16 (01) 73-77 . Doi: 10.1177/1051228405279988
  • 277 Kasahara S, Miki Y, Kanagaki M. , et al. “Hot cross bun” sign in multiple system atrophy with predominant cerebellar ataxia: a comparison between proton density-weighted imaging and T2-weighted imaging. Eur J Radiol 2012; 81 (10) 2848-2852 . Doi: 10.1016/j.ejrad.2011.12.012
  • 278 Schrag A, Good CD, Miszkiel K. , et al. Differentiation of atypical parkinsonian syndromes with routine MRI. Neurology 2000; 54 (03) 697-702 . Doi: 10.1212/WNL.55.8.1239-a
  • 279 Horimoto Y, Aiba I, Yasuda T. , et al. Longitudinal MRI study of multiple system atrophy - when do the findings appear, and what is the course?. J Neurol 2002; 249 (07) 847-854 . Doi: 10.1007/s00415-002-0734-0
  • 280 Takao M, Kadowaki T, Tomita Y, Yoshida Y, Mihara B. ‘Hot-cross bun sign’ of multiple system atrophy. Intern Med 2007; 46 (22) 1883 . Doi: 10.2169/internalmedicine.46.0514
  • 281 Mandelli ML, De Simone T, Minati L. , et al. Diffusion tensor imaging of spinocerebellar ataxias types 1 and 2. AJNR Am J Neuroradiol 2007; 28 (10) 1996-2000 . Doi: 10.3174/ajnr.A0716
  • 282 Loy CT, Sweeney MG, Davis MB. , et al. Spinocerebellar ataxia type 17: extension of phenotype with putaminal rim hyperintensity on magnetic resonance imaging. Mov Disord 2005; 20 (11) 1521-1523 . Doi: 10.1002/mds.20529
  • 283 Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 2004; 3 (05) 291-304 . Doi: 10.1016/S1474-4422(04)00737-9
  • 284 Soares-Fernandes JP, Ribeiro M, Machado A. “Hot cross bun” sign in variant Creutzfeldt-Jakob disease. AJNR Am J Neuroradiol 2009; 30 (03) E37 . Doi: 10.3174/ajnr.A1335
  • 285 Muqit MM, Mort D, Miskiel KA, Shakir RA. “Hot cross bun” sign in a patient with parkinsonism secondary to presumed vasculitis. J Neurol Neurosurg Psychiatry 2001; 71 (04) 565-566
  • 286 Tha KK, Terae S, Tsukahara A. , et al. Hyperintense putaminal rim at 1.5 T: prevalence in normal subjects and distinguishing features from multiple system atrophy. BMC Neurol 2012; 12 (01) 39 . Doi: 10.1186/1471-2377-12-39
  • 287 Ghaemi M, Hilker R, Rudolf J, Sobesky J, Heiss WD. Differentiating multiple system atrophy from Parkinson's disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging. J Neurol Neurosurg Psychiatry 2002; 73 (05) 517-523 . Doi: 10.1136/jnnp.73.5.517
  • 288 Brenneis C, Seppi K, Schocke MF. , et al. Voxel-based morphometry detects cortical atrophy in the Parkinson variant of multiple system atrophy. Mov Disord 2003; 18 (10) 1132-1138 . Doi: 10.1002/mds.10502
  • 289 Specht K, Minnerop M, Abele M, Reul J, Wüllner U, Klockgether T. In vivo voxel-based morphometry in multiple system atrophy of the cerebellar type. Arch Neurol 2003; 60 (10) 1431-1435 . Doi: 10.1001/archneur.60.10.1431
  • 290 Brenneis C, Boesch SM, Egger KE. , et al. Cortical atrophy in the cerebellar variant of multiple system atrophy: a voxel-based morphometry study. Mov Disord 2006; 21 (02) 159-165 . Doi: 10.1002/mds.20656
  • 291 Minnerop M, Specht K, Ruhlmann J. , et al. Voxel-based morphometry and voxel-based relaxometry in multiple system atrophy-a comparison between clinical subtypes and correlations with clinical parameters. Neuroimage 2007; 36 (04) 1086-1095 . Doi: 10.1016/j.neuroimage.2007.04.028
  • 292 Brenneis C, Egger K, Scherfler C. , et al. Progression of brain atrophy in multiple system atrophy. A longitudinal VBM study. J Neurol 2007; 254 (02) 191-196 . Doi: 10.1007/s00415-006-0325-6
  • 293 Schulz JB, Skalej M, Wedekind D. , et al. Magnetic resonance imaging-based volumetry differentiates idiopathic Parkinson's syndrome from multiple system atrophy and progressive supranuclear palsy. Ann Neurol 1999; 45 (01) 65-74 http://www.ncbi.nlm.nih.gov/pubmed/9894879 Accessed June 22, 2017
  • 294 Ngai S, Tang YM, Du L, Stuckey S. Hyperintensity of the middle cerebellar peduncles on fluid-attenuated inversion recovery imaging: variation with age and implications for the diagnosis of multiple system atrophy. AJNR Am J Neuroradiol 2006; 27 (10) 2146-2148
  • 295 Lee EA, Cho HI, Kim SS, Lee WY. Comparison of magnetic resonance imaging in subtypes of multiple system atrophy. Parkinsonism Relat Disord 2004; 10 (06) 363-368 . Doi: 10.1016/j.parkreldis.2004.04.008
  • 296 Bhattacharya K, Saadia D, Eisenkraft B. , et al. Brain magnetic resonance imaging in multiple-system atrophy and Parkinson disease: a diagnostic algorithm. Arch Neurol 2002; 59 (05) 835-842
  • 297 Worker A, Blain C, Jarosz J. , et al. Diffusion tensor imaging of Parkinson's disease, multiple system atrophy and progressive supranuclear palsy: a tract-based spatial statistics study. PLoS One 2014; 9 (11) e112638 . Doi: 10.1371/journal.pone.0112638
  • 298 Schocke MFH, Seppi K, Esterhammer R. , et al. Diffusion-weighted MRI differentiates the Parkinson variant of multiple system atrophy from PD. Neurology 2002; 58 (04) 575-580 . Doi: 10.1212/WNL.58.4.575
  • 299 Schocke MFH, Seppi K, Esterhammer R. , et al. Trace of diffusion tensor differentiates the Parkinson variant of multiple system atrophy and Parkinson's disease. Neuroimage 2004; 21 (04) 1443-1451 . Doi: 10.1016/j.neuroimage.2003.12.005
  • 300 Seppi K, Schocke MFH, Prennschuetz-Schuetzenau K. , et al. Topography of putaminal degeneration in multiple system atrophy: a diffusion magnetic resonance study. Mov Disord 2006; 21 (06) 847-852 . Doi: 10.1002/mds.20843
  • 301 Nicoletti G, Lodi R, Condino F. , et al. Apparent diffusion coefficient measurements of the middle cerebellar peduncle differentiate the Parkinson variant of MSA from Parkinson's disease and progressive supranuclear palsy. Brain 2006; 129 (Pt 10): 2679-2687 . Doi: 10.1093/brain/awl166
  • 302 Paviour DC, Thornton JS, Lees AJ, Jäger HR. Diffusion-weighted magnetic resonance imaging differentiates Parkinsonian variant of multiple-system atrophy from progressive supranuclear palsy. Mov Disord 2007; 22 (01) 68-74 . Doi: 10.1002/mds.21204
  • 303 Baudrexel S, Seifried C, Penndorf B. , et al. The value of putaminal diffusion imaging versus 18-fluorodeoxyglucose positron emission tomography for the differential diagnosis of the Parkinson variant of multiple system atrophy. Mov Disord 2014; 29 (03) 380-387 . Doi: 10.1002/mds.25749
  • 304 Kanazawa M, Shimohata T, Terajima K. , et al. Quantitative evaluation of brainstem involvement in multiple system atrophy by diffusion-weighted MR imaging. J Neurol 2004; 251 (09) 1121-1124 . Doi: 10.1007/s00415-004-0494-0
  • 305 Fulham MJ, Dubinsky RM, Polinsky RJ. , et al. Computed tomography, magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose in multiple system atrophy and pure autonomic failure. Clin Auton Res 1991; 1 (01) 27-36 http://www.ncbi.nlm.nih.gov/pubmed/1821662 Accessed June 6, 2017
  • 306 Bosman T, Van Laere K, Santens P. Anatomically standardised 99mTc-ECD brain perfusion SPET allows accurate differentiation between healthy volunteers, multiple system atrophy and idiopathic Parkinson's disease. Eur J Nucl Med Mol Imaging 2003; 30 (01) 16-24 . Doi: 10.1007/s00259-002-1009-9
  • 307 Cilia R, Marotta G, Benti R, Pezzoli G, Antonini A. Brain SPECT imaging in multiple system atrophy. J Neural Transm (Vienna) 2005; 112 (12) 1635-1645 . Doi: 10.1007/s00702-005-0382-5
  • 308 Kim YJ, Ichise M, Ballinger JR. , et al. Combination of dopamine transporter and D2 receptor SPECT in the diagnostic evaluation of PD, MSA, and PSP. Mov Disord 2002; 17 (02) 303-312 http://www.ncbi.nlm.nih.gov/pubmed/11921116 Accessed June 6, 2017
  • 309 Perlman S. Evaluation and Management of Ataxic Disorders: An Overview for Physicians . Minneapolis, MN: National Ataxia Foundation; 2007
  • 310 Klockgether T, Skalej M, Wedekind D. , et al. Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain 1998; 121 (Pt 9): 1687-1693
  • 311 Brenneis C, Bösch SM, Schocke M, Wenning GK, Poewe W. Atrophy pattern in SCA2 determined by voxel-based morphometry. Neuroreport 2003; 14 (14) 1799-1802 . Doi: 10.1097/00001756-200310060-00008
  • 312 Lin IS, Wu RM, Lee-Chen GJ, Shan DE, Gwinn-Hardy K. The SCA17 phenotype can include features of MSA-C, PSP and cognitive impairment. Parkinsonism Relat Disord 2007; 13 (04) 246-249 . Doi: 10.1016/j.parkreldis.2006.04.009
  • 313 Schöls L, Amoiridis G, Epplen JT, Langkafel M, Przuntek H, Riess O. Relations between genotype and phenotype in German patients with the Machado-Joseph disease mutation. J Neurol Neurosurg Psychiatry 1996; 61 (05) 466-470 . Doi: 10.1136/jnnp.61.5.466
  • 314 Schöls L, Haan J, Riess O, Amoiridis G, Przuntek H. Sleep disturbance in spinocerebellar ataxias: is the SCA3 mutation a cause of restless legs syndrome?. Neurology 1998; 51 (06) 1603-1607
  • 315 Lima L, Coutinho P. Clinical criteria for diagnosis of Machado-Joseph disease: report of a non-Azorena Portuguese family. Neurology 1980; 30 (03) 319-322 http://www.ncbi.nlm.nih.gov/pubmed/7189034 Accessed June 6, 2017
  • 316 Murata Y, Yamaguchi S, Kawakami H. , et al. Characteristic magnetic resonance imaging findings in Machado-Joseph disease. Arch Neurol 1998; 55 (01) 33-37 . Doi: 10.1001/archneur.55.1.33
  • 317 Harding AE. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the ‘the Drew family of Walworth’. Brain 1982; 105 (Pt 1): 1-28 http://www.ncbi.nlm.nih.gov/pubmed/7066668 Accessed June 6, 2017
  • 318 Harding AE. “Idiopathic” late onset cerebellar ataxia. A clinical and genetic study of 36 cases. J Neurol Sci 1981; 51 (02) 259-271
  • 319 Kerber KA, Jen JC, Perlman S, Baloh RW. Late-onset pure cerebellar ataxia: differentiating those with and without identifiable mutations. J Neurol Sci 2005; 238 (1-2): 41-45 . Doi: 10.1016/j.jns.2005.06.006
  • 320 Wardle M, Majounie E, Muzaimi MB, Williams NM, Morris HR, Robertson NP. The genetic aetiology of late-onset chronic progressive cerebellar ataxia. A population-based study. J Neurol 2009; 256 (03) 343-348 . Doi: 10.1007/s00415-009-0015-2
  • 321 Brussino A, Gellera C, Saluto A. , et al. FMR1 gene premutation is a frequent genetic cause of late-onset sporadic cerebellar ataxia. Neurology 2005; 64 (01) 145-147 . Doi: 10.1212/01.WNL.0000148723.37489.3F
  • 322 Bürk K, Bühring U, Schulz JB, Zühlke C, Hellenbroich Y, Dichgans J. Clinical and magnetic resonance imaging characteristics of sporadic cerebellar ataxia. Arch Neurol 2005; 62 (06) 981-985 . Doi: 10.1001/archneur.62.6.981
  • 323 Koide R, Onodera O, Ikeuchi T. , et al. Atrophy of the cerebellum and brainstem in dentatorubral pallidoluysian atrophy. Influence of CAG repeat size on MRI findings. Neurology 1997; 49 (06) 1605-1612 . Doi: 10.1212/WNL.49.6.1605
  • 324 Jacquemont S, Hagerman RJ, Leehey M. , et al. Fragile X premutation tremor/ataxia syndrome: molecular, clinical, and neuroimaging correlates. Am J Hum Genet 2003; 72 (04) 869-878 . Doi: 10.1086/374321
  • 325 Jacquemont S, Farzin F, Hall D. , et al. Aging in individuals with the FMR1 mutation. Am J Ment Retard 2004; 109 (02) 154-164 . Doi: 10.1352/0895-8017(2004)109<154:AIIWTF>2.0.CO;2
  • 326 Chang CC, Eggers SD, Johnson JK, Haman A, Miller BL, Geschwind MD. Anti-GAD antibody cerebellar ataxia mimicking Creutzfeldt-Jakob disease. Clin Neurol Neurosurg 2007; 109 (01) 54-57 . Doi: 10.1016/j.clineuro.2006.01.009
  • 327 Peterson K, Rosenblum MK, Kotanides H, Posner JB. Paraneoplastic cerebellar degeneration. I. A clinical analysis of 55 anti-Yo antibody-positive patients. Neurology 1992; 42 (10) 1931-1937 http://www.ncbi.nlm.nih.gov/pubmed/1407575 Accessed June 6, 2017
  • 328 Aylward EHH, Li Q, Stine OC. , et al. Longitudinal change in basal ganglia volume in patients with Huntington's disease. Neurology 1997; 48 (02) 394-399 . Doi: 10.1212/WNL.48.2.394
  • 329 Aylward EH, Nopoulos PC, Ross CA. , et al; PREDICT-HD Investigators and Coordinators of Huntington Study Group. Longitudinal change in regional brain volumes in prodromal Huntington disease. J Neurol Neurosurg Psychiatry 2011; 82 (04) 405-410 . Doi: 10.1136/jnnp.2010.208264
  • 330 Ruocco HH, Bonilha L, Li LM, Lopes-Cendes I, Cendes F. Longitudinal analysis of regional grey matter loss in Huntington disease: effects of the length of the expanded CAG repeat. J Neurol Neurosurg Psychiatry 2008; 79 (02) 130-135 . Doi: 10.1136/jnnp.2007.116244
  • 331 Apple AC, Possin KL, Satris G. , et al. Quantitative 7T Phase Imaging in Premanifest Huntington Disease. Am J Neuroradiol 2014; 35: 1707-1713
  • 332 Kim H, Kim JH, Possin KL. , et al. Surface-based morphometry reveals caudate subnuclear structural damage in patients with premotor Huntington disease. Brain Imaging Behav 2017; 11 (05) 1365-1372 . Doi: 10.1007/s11682-016-9616-4
  • 333 Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson Jr EP. Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol 1985; 44 (06) 559-577 http://www.ncbi.nlm.nih.gov/pubmed/2932539 Accessed June 6, 2017
  • 334 Rosas HD, Koroshetz WJ, Chen YI. , et al. Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 2003; 60 (10) 1615-1620 . Doi: 10.1212/WNL.62.3.523-a
  • 335 Tabrizi SJ, Langbehn DR, Leavitt BR. , et al; TRACK-HD investigators. Biological and clinical manifestations of Huntington's disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol 2009; 8 (09) 791-801 . Doi: 10.1016/S1474-4422(09)70170-X.Biological
  • 336 Ciarmiello A, Cannella M, Lastoria S. , et al. Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington's disease. J Nucl Med 2006; 47 (02) 215-222
  • 337 Paulsen JS, Magnotta VA, Mikos AE. , et al. Brain structure in preclinical Huntington's disease. Biol Psychiatry 2006; 59 (01) 57-63 . Doi: 10.1016/j.biopsych.2005.06.003
  • 338 Paulsen JS, Nopoulos PC, Aylward E. , et al; PREDICT-HD Investigators and Coordinators of the Huntington's Study Group (HSG). Striatal and white matter predictors of estimated diagnosis for Huntington disease. Brain Res Bull 2010; 82 (3-4): 201-207 . Doi: 10.1016/j.brainresbull.2010.04.003
  • 339 Stoffers D, Sheldon S, Kuperman JM, Goldstein J, Corey-Bloom J, Aron AR. Contrasting gray and white matter changes in preclinical Huntington disease: an MRI study. Neurology 2010; 74 (15) 1208-1216 . Doi: 10.1212/WNL.0b013e3181d8c20a
  • 340 Rosas HD, Tuch DS, Hevelone ND. , et al. Diffusion tensor imaging in presymptomatic and early Huntington's disease: selective white matter pathology and its relationship to clinical measures. Mov Disord 2006; 21 (09) 1317-1325 . Doi: 10.1002/mds.20979
  • 341 Della Nave R, Ginestroni A, Tessa C. , et al. Regional distribution and clinical correlates of white matter structural damage in Huntington disease: a tract-based spatial statistics study. AJNR Am J Neuroradiol 2010; 31 (09) 1675-1681 . Doi: 10.3174/ajnr.A2128
  • 342 Bohanna I, Georgiou-Karistianis N, Sritharan A. , et al. Diffusion tensor imaging in Huntington's disease reveals distinct patterns of white matter degeneration associated with motor and cognitive deficits. Brain Imaging Behav 2011; 5 (03) 171-180 . Doi: 10.1007/s11682-011-9121-8
  • 343 Delmaire C, Dumas EM, Sharman MA. , et al. The structural correlates of functional deficits in early huntington's disease. Hum Brain Mapp 2013; 34 (09) 2141-2153 . Doi: 10.1002/hbm.22055
  • 344 Paulsen JS, Zimbelman JL, Hinton SC. , et al. fMRI biomarker of early neuronal dysfunction in presymptomatic Huntington's Disease. AJNR Am J Neuroradiol 2004; 25 (10) 1715-1721
  • 345 Reading SAJ, Dziorny AC, Peroutka LA. , et al. Functional brain changes in presymptomatic Huntington's disease. Ann Neurol 2004; 55 (06) 879-883 . Doi: 10.1002/ana.20121
  • 346 Paulsen JS. Functional imaging in Huntington's disease. Exp Neurol 2009; 216 (02) 272-277
  • 347 van den Bogaard SJA, Dumas EM, Milles J. , et al. Magnetization transfer imaging in premanifest and manifest Huntington disease. AJNR Am J Neuroradiol 2012; 33 (05) 884-889
  • 348 Feigin A, Leenders KL, Moeller JR. , et al. Metabolic network abnormalities in early Huntington's disease: an [(18)F]FDG PET study. J Nucl Med 2001; 42 (11) 1591-1595 http://www.ncbi.nlm.nih.gov/pubmed/11696626 Accessed June 22, 2017
  • 349 Saft C, Schüttke A, Beste C, Andrich J, Heindel W, Pfleiderer B. fMRI reveals altered auditory processing in manifest and premanifest Huntington's disease. Neuropsychologia 2008; 46 (05) 1279-1289 . Doi: 10.1016/j.neuropsychologia.2007.12.002
  • 350 Novak MJU, Warren JD, Henley SMD, Draganski B, Frackowiak RS, Tabrizi SJ. Altered brain mechanisms of emotion processing in pre-manifest Huntington's disease. Brain 2012; 135 (Pt 4): 1165-1179 . Doi: 10.1093/brain/aws024
  • 351 Sturrock A, Laule C, Decolongon J. , et al. Magnetic resonance spectroscopy biomarkers in premanifest and early Huntington disease. Neurology 2010; 75 (19) 1702-1710 . Doi: 10.1212/WNL.0b013e3181fc27e4
  • 352 Binney RJ, Pankov A, Marx G. , et al. Data-driven regions of interest for longitudinal change in three variants of frontotemporal lobar degeneration. Brain Behav 2017; 7 (04) e00675 . Doi: 10.1002/brb3.675
  • 353 Pankov A, Binney RJ, Staffaroni AM. , et al. Data-driven regions of interest for longitudinal change in frontotemporal lobar degeneration. Neuroimage Clin 2015; 12: 332-340 . Doi: 10.1016/j.nicl.2015.08.002
  • 354 Dupont A-C, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Tronel C, Arlicot N. Translocator Protein-18 kDa (TSPO) Positron Emission Tomography (PET) Imaging and Its Clinical Impact in Neurodegenerative Diseases. Int J Mol Sci 2017; 18 (04) 785 . Doi: 10.3390/ijms18040785
  • 355 Bullmore ET, Bassett DS. Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 2011; 7 (01) 113-140 . Doi: 10.1146/annurev-clinpsy-040510-143934
  • 356 Rosazza C, Minati L. Resting-state brain networks: literature review and clinical applications. Neurol Sci 2011; 32 (05) 773-785 . Doi: 10.1007/s10072-011-0636-y
  • 357 Jones DT, Knopman DS, Gunter JL. , et al; Alzheimer's Disease Neuroimaging Initiative. Cascading network failure across the Alzheimer's disease spectrum. Brain 2016; 139 (Pt 2): 547-562 . Doi: 10.1093/brain/awv338
  • 358 Ranasinghe KG, Rankin KP, Pressman PS. , et al. Distinct subtypes of behavioral-variant frontotemporal dementia based on patterns of network degeneration. JAMA Neurol 2016; 73 (09) 1078-1088 . Doi: 10.1001/jamaneurol.2016.2016
  • 359 Griffa A, Baumann PS, Thiran J-P, Hagmann P. Structural connectomics in brain diseases. Neuroimage 2013; 80: 515-526 . Doi: 10.1016/j.neuroimage.2013.04.056
  • 360 Sawlani V. Diffusion-weighted imaging and apparent diffusion coefficient evaluation of herpes simplex encephalitis and Japanese encephalitis. J Neurol Sci 2009; 287 (1-2): 221-226 . Doi: 10.1016/j.jns.2009.07.010
  • 361 Küker W, Nägele T, Schmidt F, Heckl S, Herrlinger U. Diffusion-weighted MRI in herpes simplex encephalitis: a report of three cases. Neuroradiology 2004; 46 (02) 122-125 . Doi: 10.1007/s00234-003-1145-3
  • 362 Hufnagel A, Weber J, Marks S. , et al. Brain diffusion after single seizures. Epilepsia 2003; 44 (01) 54-63 http://www.ncbi.nlm.nih.gov/pubmed/12581230 Accessed July 20, 2017
  • 363 Milligan TA, Zamani A, Bromfield E. Frequency and patterns of MRI abnormalities due to status epilepticus. Seizure 2009; 18 (02) 104-108 . Doi: 10.1016/j.seizure.2008.07.004
  • 364 Burdette JH, Elster AD, Ricci PE. Acute cerebral infarction: quantification of spin-density and T2 shine-through phenomena on diffusion-weighted MR images. Radiology 1999; 212 (02) 333-339 . Doi: 10.1148/radiology.212.2.r99au36333