Osteologie 2012; 21(03): 143-150
DOI: 10.1055/s-0037-1621678
Osteoplastie der Wirbelsäule
Schattauer GmbH

Warum bricht die Wirbelsäule wo sie bricht?

Literaturübersicht zur bimodalen Verteilung osteo porotischer KeilwirbelfrakturenWhy do osteoporotic vetrebral fractures cluster in the mid-thoracic and thoracolumbar region?
S. F. Baumbach
1   Chirurgische Klinik und Poliklinik – Innenstadt, Abteilung für Unfallchirurgie, Ludwig-Maximilians Universität München
2   Osteologisches Schwerpunktzentrum – Campus Innenstadt, Ludwig-Maximilians Universität München
,
W. Böcker
3   Klinik und Poliklinik für Unfallchirurgie, Universitätsklinikum Gießen und Marburg GmbH, Standort Gießen
,
W. Mutschler
1   Chirurgische Klinik und Poliklinik – Innenstadt, Abteilung für Unfallchirurgie, Ludwig-Maximilians Universität München
2   Osteologisches Schwerpunktzentrum – Campus Innenstadt, Ludwig-Maximilians Universität München
,
M. Schieker
1   Chirurgische Klinik und Poliklinik – Innenstadt, Abteilung für Unfallchirurgie, Ludwig-Maximilians Universität München
2   Osteologisches Schwerpunktzentrum – Campus Innenstadt, Ludwig-Maximilians Universität München
› Author Affiliations
Further Information

Publication History

eingereicht: 05 May 2012

angenommen: 03 July 2012

Publication Date:
04 January 2018 (online)

Zusammenfassung

Osteoporotische Wirbelkörperfrakturen zeigen eine bimodale Verteilung (Th7/Th8 und Th11–L1), die sich nicht alleine durch eine generalisierte Reduktion der Wirbelkörperbruchlast erklären lässt. Das Ziel dieser Literaturübersicht war, neben osteoporotischen Veränderungen, biomechanische, degenerative und strukturelle Wirbelsäulenveränderungen zu identifizieren, die dieses bimodale Frakturmuster erklären. Biomechanisch befindet sich der thorakolumbaleÜbergang in einem Spannungsfeld zwischen der rigiden, kyphotischen Brustwirbelsäule (BWS) und der hyperflexiblen, lordotischen Lendenwirbelsäule. Auf den Apex der BWS-Kyphose wirken die größten Kompressions und Biegekräfte. Verstärkt wird dieser Effekt durch prävalente Wirbelkörperfraktur in diesem Bereich, die zu einer Frakturhäufung führen. Degenerative Veränderungen der Bandscheibe führen zu einer veränderten intra-und intervertebralen Lastübertragung. Dabei kommt es zu einer sekundären Schwächung der zentralen trabekulären Struktur und zu einer vermehrten Kraftübertragungüber die Facettengelenke im aufrechten Stand (Stress-Shielding), was einen Lastanstieg von bis zu 300 % auf den anterioren Wirbelkörper beim Vorbeugen zur Folge hat. Sowohl Osteoporose als auch veränderte Lastbedingungen führen zu Veränderungen der Wirbelkörpermorphologie. Während Osteoporose zu einer Reduktion der Wirbelkörperbruchlast insgesamt führt, bedingen degenerative Prozesse anisotrope intravertebrale Umbauvorgänge. Entsprechend der im Rahmen der Banscheibendegeneration auftretenden Lastveränderungen werden die zentralen und anterioren Wirbelkörper geschwächt.

Summary

Vertebral fractures are the most common human fractures, are considered the hallmark of osteoporosis and constitute a considerable socio-economic burden. Osteoporotic vertebral fractures are known to cluster in the mid-thoracic and thoracolumbar region, which may not be explained by the loss of bone mass and trabecular bone structure alone. The aim of this literature review was to identify, next to osteoporotic changes, biomechanical, degenerative and structural changes of the spine, which explain the observed bimodal fracture distribution. From a biomechanical point of view, the thoracolumbar region resembles a transition zone in-between the kyphotic, rigid upper thoracic spine and the lordotic and mobile lumbar spine. The thoracic apex (T6–T8) is prone to fracture because of its greatest distance to the center of gravity line and the subsequent maximum compression and bending forces on the apex vertebrae. A prevalent vertebral fracture further increases the kyphotic deformity and consequently increases the anterior bending moments on the adjacent inferior vertebra. This phenomenon is referred to as vertebral fracture cascade and might explain the clustering of vertebral wedge fractures. Moreover, data indicate, that smaller vertebrae constitute to fracture. Intervertebral disc degeneration results in an altered intra-and intervertebral load transmission. With degeneration, the proteoglycan content decreases and the fibrous amount increases, changing the intervertebral disc's biomechanical properties form viscoelastic to more elastic. Force transmission onto the inferior vertebral body shifts from central to peripher, resulting in trabecular degeneration of the central vertebral region. Reduced disc height results in an intervertebral load-bearing shift from the vertebral body to the neural arch during erect standing (Stress-shielding). Forward bending then results in a 300 % force increase onto the anterior vertebral body. Osteoporosis as well as altered load distribution results in secondary intracorporal structural changes. Whereas osteoporosis leads to an overall reduced bone strength, altered load distribution results in anisotropic architectural changes, with a weakening of the central and anterior vertebral body.

 
  • Literatur

  • 1 Foundation NO. America's bone health: the state of osteoporosis and low bone mass in our nation. Washington (DC): National Osteoporosis Foundation; 2002
  • 2 Reginster J-Y, Burlet N. Osteoporosis: a still increasing prevalence. Bone 2006; 38 (Suppl. 02) (Suppl. 01) S4-S9.
  • 3 Kanis JA, Johnell O. Requirements for DXA for the management of osteoporosis in Europe. Osteoporosis international 2005; 16 (03) 229-238.
  • 4 Christiansen BA, Bouxsein ML. Biomechanics of vertebral fractures and the vertebral fracture cascade. Curr Osteoporos Rep 2010; 8 (04) 198-204.
  • 5 Riggs BL, Melton LJ. The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone 1995; 17 (Suppl. 05) 505S-511S.
  • 6 Albright F, Smith PH, Richardson AM. Postmenopausal osteoporosis: Its clinical features. JAMA 1941; 116: 2465-2474.
  • 7 Melton LJ, Lane AW, Cooper C. et al. Prevalence and incidence of vertebral deformities. Osteoporos Int 1993; 3 (03) 113-119.
  • 8 Kanis JA, Johnell O, Oden A. et al. The risk and burden of vertebral fractures in Sweden. Osteoporosis international 2004; 15 (01) 20-26.
  • 9 Hasserius R, Karlsson MK, Jónsson B. et al. Longterm morbidity and mortality after a clinically diagnosed vertebral fracture in the elderly – a 12-and 22-year follow-up of 257 patients. Calcif Tissue Int 2005; 76 (04) 235-242.
  • 10 Eastell R, Cedel SL, Wahner HW. et al. Classification of vertebral fractures. J Bone Miner Res 1991; 6 (03) 207-215.
  • 11 Ismail AA, Cooper C, Felsenberg D. et al. Number and type of vertebral deformities: epidemiological characteristics and relation to back pain and height loss. European Vertebral Osteoporosis Study Group. Osteoporos Int 1999; 9 (03) 206-213.
  • 12 Melton LJ. Epidemiology of osteoporosis. Baillieres Clin Obstet Gynaecol 1991; 5 (04) 785-805.
  • 13 Cooper C, Atkinson EJ, O'Fallon WM, Melton LJ. Incidence of clinically diagnosed vertebral fractures: a population – based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 1992; 7 (02) 221-227.
  • 14 Duan Y, Seeman E, Turner CH. The biomechanical basis of vertebral body fragility in men and women. J Bone Miner Res 2001; 16 (12) 2276-2283.
  • 15 Lunt M, O'Neill TW, Felsenberg D. et al. Characteristics of a prevalent vertebral deformity predict subsequent vertebral fracture: results from the European Prospective Osteoporosis Study (EPOS). Bone 2003; 33 (04) 505-513.
  • 16 Delmas PD, van de Langerijt L, Watts NB. et al. Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. J Bone Miner Res 2005; 20 (04) 557-563.
  • 17 Möller G, Andresen R, Banzer D. Shape modelbased semi-automatic morphometric assessment of vertebral deformities in clinical practice. Results of a multi-centre medical practice evaluation pilot study in Germany. Osteologie 2011; 20: 239-247.
  • 18 Ryan MD, Henderson JJ. The epidemiology of fractures and fracture-dislocations of the cervical spine. Injury 1992; 23 (01) 38-40.
  • 19 Spivak JM, Weiss MA, Cotler JM, Call M. Cervical spine injuries in patients 65 and older. Spine 1994; 19 (20) 2302-2306.
  • 20 Lieberman IH, Webb JK. Cervical spine injuries in the elderly. The Journal of bone and joint surgery British volume 1994; 76 (06) 877-881.
  • 21 Golob JF, Claridge JA, Yowler CJ. et al. Isolated cervical spine fractures in the elderly: a deadly injury. The Journal of trauma 2008; 64 (02) 311-315.
  • 22 Lomoschitz FM, Blackmore CC, Mirza SK, Mann FA. Cervical spine injuries in patients 65 years old and older: epidemiologic analysis regarding the effects of age and injury mechanism on distribution, type, and stability of injuries. AJR American journal of roentgenology 2002; 178 (03) 573-577.
  • 23 Reinhold M, Knop C, Beisse R. et al. Operative treatment of traumatic fractures of the thoracic and lumbar spinal column. Part I: epidemiology. Der Unfallchirurg 2009; 112 (01) 33-42 4–5.
  • 24 Leucht P, Fischer K, Muhr G, Mueller EJ. Epidemiology of traumatic spine fractures. Injury 2009; 40 (02) 166-172.
  • 25 Johnell O, Kanis J. Epidemiology of osteoporotic fractures. Osteoporosis international 2005; 16 (Suppl. 02) S3-S7.
  • 26 Melton LJ. How many women have osteoporosis now?. J Bone Miner Res 1995; 10 (02) 175-177.
  • 27 Melton LJ. Epidemiology of spinal osteoporosis. Spine 1997; 22 (Suppl. 24) 2S-11S.
  • 28 Evans AJ, Jensen ME, Kip KE. et al. Vertebral compression fractures: pain reduction and improvement in functional mobility after percutaneous polymethylmethacrylate vertebroplasty retrospective report of 245 cases. Radiology 2003; 226 (02) 366-372.
  • 29 Myers ER, Wilson SE. Biomechanics of osteoporosis and vertebral fracture. Spine 1997; 22 (Suppl. 24) 25S-31S.
  • 30 Buckley JM, Kuo CC, Cheng LC. et al. Relative strength of thoracic vertebrae in axial compression versus flexion. Spine J 2009; 9 (06) 478-485.
  • 31 Lochmüller E-M, Lill CA, Kuhn V. et al. Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 2002; 17 (09) 1629-1638.
  • 32 Muller ME, Webber CE, Bouxsein ML. Predicting the failure load of the distal radius. Osteoporosis international 2003; 14 (04) 345-352.
  • 33 Christiansen BA, Kopperdahl DL, Kiel DP. et al. Mechanical contributions of the cortical and trabecular compartments contribute to differences in age-related changes in vertebral body strength in men and women assessed by QCT-based finite element analysis. J Bone Miner Res. 2010 Nov 18.
  • 34 Kapandji IA. The Physiology of the Joints. Vol. 3 Edinburgh, London, New YorK: Churchill Livingstone; 1974: 1-251.
  • 35 Vialle R, Levassor N, Rillardon L. et al. Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. The Journal of bone and joint surgery American volume 2005; 87 (02) 260-267.
  • 36 White III AA, Panjabi MM. Clinical Biomechanics of the Spine, 2nd edition. Philadelphia: JB Lippincott Company; 1990: 0-739.
  • 37 Jackson RP, McManus AC. Radiographic analysis of sagittal plane alignment and balance in standing volunteers and patients with low back pain matched for age, sex, and size. A prospective controlled clinical study. Spine 1994; 19 (14) 1611-1618.
  • 38 Gelb DE, Lenke LG, Bridwell KH. et al. An analysis of sagittal spinal alignment in 100 asymptomatic middle and older aged volunteers. Spine 1995; 20 (12) 1351-1358.
  • 39 Bell GH, Dunbar O, Beck JS, Gibb A. Variations in strength of vertebrae with age and their relation to osteoporosis. Calcified tissue research 1967; 1 (01) 75-86.
  • 40 Lochmüller E-M, Bürklein D, Kuhn V. et al. Mechanical strength of the thoracolumbar spine in the elderly: prediction from in situ dual-energy X-ray absorptiometry, quantitative computed tomography (QCT), upper and lower limb peripheral QCT, and quantitative ultrasound. Bone 2002; 31 (01) 77-84.
  • 41 Eckstein F, Fischbeck M, Kuhn V. et al. Determinants and heterogeneity of mechanical competence throughout the thoracolumbar spine of elderly women and men. Bone 2004; 35 (02) 364-374.
  • 42 Mazess RB, Barden H, Mautalen C, Vega E. Normalization of spine densitometry. J Bone Miner Res 1994; 9 (04) 541-548.
  • 43 Gilsanz V, Loro ML, Roe TF. et al. Vertebral size in elderly women with osteoporosis. Mechanical implications and relationship to fractures. J Clin Invest 1995; 95 (05) 2332-2337.
  • 44 Klotzbuecher CM, Ross PD, Landsman PB. et al. Patients with prior fractures have an increased risk of future fractures: a summary of the Literature and statistical synthesis. J Bone Miner Res 2000; 15 (04) 721-739.
  • 45 Delmas PD, Genant HK, Crans GG. et al. Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone 2003; 33 (04) 522-532.
  • 46 Melton LJ, Atkinson EJ, Cooper C. et al. Vertebral fractures predict subsequent fractures. Osteoporos Int 1999; 10 (03) 214-221.
  • 47 Ross PD, Genant HK, Davis JW. et al. Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int 1993; 3 (03) 120-126.
  • 48 Wustrack R, Seeman E, Bucci-Rechtweg C. et al. Predictors of new and severe vertebral fractures: results from the HORIZON Pivotal Fracture Trial. Osteoporosis international 2012; 23 (01) 53-58.
  • 49 Rohlmann A, Zander T, Bergmann G. Spinal loads after osteoporotic vertebral fractures treated by vertebroplasty or kyphoplasty. Eur Spine J 2006; 15 (08) 1255-1264.
  • 50 Ferguson SJ, Steffen T. Biomechanics of the aging spine. Eur Spine J 2003; 12 (Suppl. 02) S97-S103.
  • 51 Sornay-Rendu E, Allard C, Munoz F. et al. Disc space narrowing as a new risk factor for vertebral fracture: the OFELY study. Arthritis Rheum 2006; 54 (04) 1262-1269.
  • 52 Iatridis JC, Setton LA, Weidenbaum M, Mow VC. Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging. J Orthop Res 1997; 15 (02) 318-322.
  • 53 Kim PK, Branch CL. The lumbar degenerative disc: confusion, mechanics, management. Clin Neurosurg 2006; 53: 18-25.
  • 54 Rohlmann A, Zander T, Schmidt H. et al. Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. Journal of biomechanics 2006; 39 (13) 2484-2490.
  • 55 Colombini A, Lombardi G, Corsi MM, Banfi G. Pathophysiology of the human intervertebral disc. Int J Biochem Cell Biol 2008; 40 (05) 837-842.
  • 56 Adams MA, Dolan P. Spine biomechanics. Journal of biomechanics 2005; 38 (10) 1972-1983.
  • 57 McMillan DW, McNally DS, Garbutt G, Adams MA. Stress distributions inside intervertebral discs: the validity of experimental „stress profilometry”. Proc Inst Mech Eng H 1996; 210 (02) 81-87.
  • 58 Adams MA, McMillan DW, Green TP, Dolan P. Sustained loading generates stress concentrations in lumbar intervertebral discs. Spine 1996; 21 (04) 434-438.
  • 59 Adams MA, McNally DS, Dolan P. 'Stress' distributions inside intervertebral discs. The effects of age and degeneration. The Journal of bone and joint surgery British volume 1996; 78 (06) 965-972.
  • 60 Brinckmann P, Grootenboer H. Change of disc height, radial disc bulge, and intradiscal pressure from discectomy. An in vitro investigation on human lumbar discs. Spine 1991; 16 (06) 641-646.
  • 61 Tsantrizos A, Ito K, Aebi M, Steffen T. Internal strains in healthy and degenerated lumbar intervertebral discs. Spine 2005; 30 (19) 2129-2137.
  • 62 Pollintine P, Dolan P, Tobias JH, Adams MA. Intervertebral disc degeneration can lead to „stressshielding” of the anterior vertebral body: a cause of osteoporotic vertebral fracture?. Spine 2004; 29 (07) 774-782.
  • 63 Adams MA, Pollintine P, Tobias JH. et al. Intervertebral disc degeneration can predispose to anterior vertebral fractures in the thoracolumbar spine. J Bone Miner Res 2006; 21 (09) 1409-1416.
  • 64 Dunlop RB, Adams MA, Hutton WC. Disc space narrowing and the lumbar facet joints. The Journal of bone and joint surgery British volume 1984; 66 (05) 706-710.
  • 65 Nachemson AL. The influence of spinal movements on the lumbar intradiscal pressure and on the tensile stresses in the annulus fibrosus. Acta Orthop Scand 1963; 33: 183-207.
  • 66 Adams MA, Hutton WC. The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces. J Bone Joint Surg Br 1980; 62: 358-362.
  • 67 Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. The Journal of bone and joint surgery American volume 1984; 66 (03) 397-402.
  • 68 Adams MA, McNally DS, Chinn H. Posture and the compressive strength of the lumbar spine. Clin Biomech 1994; 9: 5-14.
  • 69 Pollintine P, Przybyla AS, Dolan P. Neural arch loadbearing in old and degenerated spines. J Biomech 2004; 37: 197-204.
  • 70 Antonacci MD, Hanson DS, Leblanc A, Heggeness MH. Regional variation in vertebral bone density and trabecular architecture are influenced by osteoarthritic change and osteoporosis. Spine 1997; 22 (20) 2393-2401 discussion 401–402.
  • 71 Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 2000; 405 6787 704-706.
  • 72 Ritzel H, Amling M, Pösl M. et al. The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirtyseven autopsy specimens. J Bone Miner Res 1997; 12 (01) 89-95.
  • 73 Eswaran SK, Gupta A, Adams MF, Keaveny TM. Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res 2006; 21 (02) 307-314.
  • 74 Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 2003; 33 (04) 744-750.
  • 75 Fields AJ, Eswaran SK, Jekir MG, Keaveny TM. Role of trabecular microarchitecture in whole-vertebral body biomechanical behavior. J Bone Miner Res 2009; 24 (09) 1523-1530.
  • 76 Varga P, Baumbach S, Pahr D, Zysset PK. Validation of an anatomy specific finite element model of Colles' fracture. Journal of biomechanics 2009; 42 (11) 1726-1731.
  • 77 Varga P, Pahr DH, Baumbach S, Zysset PK. HRpQCT based FE analysis of the most distal radius section provides an improved prediction of Colles' fracture load in vitro. Bone. 2010 Aug 6.
  • 78 Moro M, Hecker AT, Bouxsein ML, Myers ER. Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA. Calcif Tissue Int 1995; 56 (03) 206-209.
  • 79 Bürklein D, Lochmüller E, Kuhn V. et al. Correlation of thoracic and lumbar vertebral failure loads with in situ vs. ex situ dual energy X-ray absorptiometry. Journal of biomechanics 2001; 34 (05) 579-587.
  • 80 McBroom RJ, Hayes WC, Edwards WT. et al. Prediction of vertebral body compressive fracture using quantitative computed tomography. The Journal of bone and joint surgery American volume 1985; 67 (08) 1206-1214.
  • 81 Silva MJ, Keaveny TM, Hayes WC. Load sharing between the shell and centrum in the lumbar vertebral body. Spine 1997; 22 (02) 140-150.
  • 82 Silva MJ, Keaveny TM, Hayes WC. Computed tomography-based finite element analysis predicts failure loads and fracture patterns for vertebral sections. J Orthop Res 1998; 16 (03) 300-308.
  • 83 Rockoff SD, Sweet E, Bleustein J. The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 1969; 3 (02) 163-175.
  • 84 Homminga J, Weinans H, Gowin W. et al. Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution. Spine 2001; 26 (14) 1555-1561.
  • 85 Fazzalari NL, Parkinson IH, Fogg QA, Sutton-Smith P. Antero-postero differences in cortical thickness and cortical porosity of T12 to L5 vertebral bodies. Joint Bone Spine 2006; 73 (03) 293-297.
  • 86 Hulme PA, Boyd SK, Ferguson SJ. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone 2007; 41 (06) 946-957.
  • 87 Keller TS, Hansson TH, Abram AC. et al. Regional variations in the compressive properties of lumbar vertebral trabeculae. Effects of disc degeneration. Spine 1989; 14 (09) 1012-1019.
  • 88 Keller TS, Moeljanto E, Main JA, Spengler DM. Distribution and orientation of bone in the human lumbar vertebral centrum. J Spinal Disord 1992; 5 (01) 60-74.
  • 89 Keller TS, Ziv I, Moeljanto E, Spengler DM. Interdependence of lumbar disc and subdiscal bone properties: a report of the normal and degenerated spine. J Spinal Disord 1993; 6 (02) 106-113.
  • 90 Cummings SR, Black D. Bone mass measurements and risk of fracture in Caucasian women: a review of findings from prospective studies. Am J Med 1995; 98 (Suppl. 02) 24S-28S.
  • 91 Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 1996; 312 7041 1254-1259.
  • 92 Gilsanz V, Gibbens DT, Roe TF. et al. Vertebral bone density in children: effect of puberty. Radiology 1988; 166 (03) 847-850.
  • 93 Riggs BL, Melton III LJ, Robb RA. et al. Populationbased study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 2004; 19 (12) 1945-1954.
  • 94 Melton LJ, Chao EYS. Biomechanical aspects of fractures. In: Riggs BL, Melrton LJ. eds. Osteoporosis: etiology, diagnosis and management. New York, NY: Raven; 1988: 111-131.
  • 95 Parfitt AM. Implications of architecture for the pathogenesis and prevention of vertebral fracture. Bone 1992; 13 (Suppl. 02) S41-S47.
  • 96 Weinstein RS, Majumdar S. Fractal geometry and vertebral compression fractures. J Bone Miner Res 1994; 9 (11) 1797-1802.
  • 97 Pistoia W, van Rietbergen B, Rüegsegger P. Mechanical consequences of different scenarios for simulated bone atrophy and recovery in the distal radius. Bone 2003; 33 (06) 937-945.
  • 98 Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 2005; 90 (12) 6508-6515.
  • 99 Khosla S, Riggs BL, Atkinson EJ. et al. Oberg AL, McDaniel LJ, Holets M. et al. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res 2006; 21 (01) 124-131.
  • 100 Khosla S, Melton LJ, Achenbach SJ. et al. Hormonal and biochemical determinants of trabecular microstructure at the ultradistal radius in women and men. J Clin Endocrinol Metab 2006; 91 (03) 885-891.
  • 101 Bouxsein ML, Melton LJ, Riggs BL. et al. Ageand sex-specific differences in the factor of risk for vertebral fracture: a population-based study using QCT. J Bone Miner Res 2006; 21 (09) 1475-1482.
  • 102 Mosekilde L. Vertebral structure and strength in vivo and in vitro. Calcif Tissue Int 1993; 53 (Suppl. 01) S121-S125 discussion S5–S6.
  • 103 Khosla S, Lufkin EG, Hodgson SF. et al. Epidemiology and clinical features of osteoporosis in young individuals. Bone 1994; 15 (05) 551-555.
  • 104 Adams MA, Dolan P. Biomechanics of vertebral compression fractures and clinical application. Archives of orthopaedic and trauma surgery 2011; 131 (12) 1703-1710.
  • 105 Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY. et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001; 344 (19) 1434-1441.
  • 106 Graeff C, Chevalier Y, Charlebois M. et al. Improvements in vertebral body strength under teriparatide treatment assessed in vivo by finite element analysis: results from the EUROFORS study. J Bone Miner Res 2009; 24 (10) 1672-1680.
  • 107 McCubbrey DA, Cody DD, Peterson EL. et al. Static and fatigue failure properties of thoracic and lumbar vertebral bodies and their relation to regional density. Journal of biomechanics 1995; 28 (08) 891-899.
  • 108 Banse X, Devogelaer JP, Munting E. et al. Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body. Bone 2001; 28 (05) 563-571.
  • 109 Oda K, Shibayama Y, Abe M, Onomura T. Morphogenesis of vertebral deformities in involutional osteoporosis. Age-related, three-dimensional trabecular structure. Spine 1998; 23 (09) 1050-1055 discussion 1056.
  • 110 Simpson EK, Parkinson IH, Manthey B, Fazzalari NL. Intervertebral disc disorganization is related to trabecular bone architecture in the lumbar spine. J Bone Miner Res 2001; 16 (04) 681-687.
  • 111 Flynn MJ, Cody DD. The assessment of vertebral bone macroarchitecture with X-ray computed tomography. Calcif Tissue Int 1993; 53 (Suppl. 01) S170-175.
  • 112 Gong H, Zhang M, Yeung HY, Qin L. Regional variations in microstructural properties of vertebral trabeculae with aging. J Bone Miner Metab 2005; 23 (02) 174-180.
  • 113 Kim D-G, Hunt CA, Zauel R. et al. The effect of regional variations of the trabecular bone properties on the compressive strength of human vertebral bodies. Annals of biomedical engineering 2007; 35 (11) 1907-1913.
  • 114 Zhao F-D, Pollintine P, Hole BD. et al. Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone 2009; 44 (02) 372-379.
  • 115 Singer K, Edmondston S, Day R. et al. Prediction of thoracic and lumbar vertebral body compressive strength: correlations with bone mineral density and vertebral region. Bone 1995; 17 (02) 167-174.
  • 116 Edmondston SJ, Singer KP, Price RI, Breidahl PD. Accuracy of lateral dual energy X-ray absorptiometry for the determination of bone mineral content in the thoracic and lumbar spine: an in vitro study. Br J Radiol 1993; 66 (784) 309-313.
  • 117 Edmondston S, Singer K, Day R. et al. In-vitro relationships between vertebral body density, size, and compressive strength the elderly thoracolumbar spine. Clin Biomech 1994; 9: 180-186.
  • 118 Lochmüller E-M, Pöschl K, Würstlin L. et al. Does thoracic or lumbar spine bone architecture predict vertebral failure strength more accurately than density?. Osteoporosis international 2008; 19 (04) 537-545.
  • 119 Wendlová J. Chondrosis of the disc – risk factor for osteoporotic vertebral fractures (biomechanical analysis). Wien Med Wochenschr 2010; 160 (17) (18) 464-469.