Z Orthop Unfall 2016; 154(02): 163-173
DOI: 10.1055/s-0041-110130
Originalarbeit
Georg Thieme Verlag KG Stuttgart · New York

Methodenvergleich von Kernspintomografie, Arthroskopie und Nah-Infrarot-Spektroskopie (NIRS) bei der Bestimmung des Arthrosegrads des Kniegelenks

Magnetic Resonance Imaging, Arthroscopy and Near-Infrared Spectroscopy (NIRS) for Grading Osteoarthritis in the Knee
G. Spahn
1   Praxisklinik für Unfallchirurgie und Orthopädie, Eisenach
2   Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Jena
,
I. Stojanovic
3   Radiologische Praxis Eisenach, Radiologische Praxis am St. Georg Klinikum Eisenach
,
E. Müller-Obliers
3   Radiologische Praxis Eisenach, Radiologische Praxis am St. Georg Klinikum Eisenach
,
G. O. Hofmann
2   Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Jena
4   Klinik für Unfall- und Wiederherstellungschirurgie, BG Kliniken Bergmannstrost, Halle
› Author Affiliations
Further Information

Publication History

Publication Date:
13 January 2016 (online)

Zusammenfassung

Zielsetzung: Anliegen der vorliegenden Untersuchung war es, den MRT-Arthrosescore WORMS (Whole-Organ Magnetic Resonance Imaging) und den arthroskopische Arthrosescore WOAKS (Whole-Organ Arthroscopic Knee Score) mit spektroskopischen Verfahren (NIRS, Nah-Infrarot-Spektroskopie) zu vergleichen. Material und Methode: Bei insgesamt 49 Patienten erfolgte die MRT-Diagnostik nach einem einheitlichen Untersuchungsprotokoll. Bei dieser wurde der WORMS zur Beurteilung des Arthrosegrads des gesamten Gelenks ermittelt. Unmittelbar danach erfolgte die Arthroskopie mit standardisierter Knorpeldiagnostik zur Bestimmung des arthroskopischen Arthrosescores (WOAKS). Schließlich erfolgte an insgesamt 14 definierten Gelenkarealen eine spektroskopische Untersuchung, in deren Rahmen der WOAKS_NIRS bestimmt wurde. Ergebnisse: Bei allen 3 Methoden zeigte sich: Die stärksten degenerativen Veränderungen lagen im Bereich der Patella vor, gefolgt vom medialen Kompartiment. Dabei betrug der relative WORMS des gesamten Gelenks 3,7 % (95 %-KI 2,8–4,6; 0–15,6 %). Der arthroskopisch bestimmte Score WOAKS lag bei 15,2 % (95 %-KI 13,2–17,2; 5–39 %). Der höchste Degenerationsgrad wurde durch spektroskopische Messungen ermittelt. Der durchschnittliche WOAKS_NIRS betrug 50,9 % (95 %-KI 48,1–53,7). Die Unterschiede zwischen den einzelnen Scores sind signifikant (p < 0,001). Schlussfolgerung: Durch die MRT werden leichtere Knorpelschäden im Vergleich zur arthroskopischen Evaluation oftmals unterbewertet bzw. gar nicht erkannt. Insbesondere jedoch für eine Frühdiagnostik der Arthrose erscheint die Standard-MRT mit den derzeitigen Möglichkeiten begrenzt zu sein. Dies trifft in ähnlicher Weise auch für die Standardarthroskopie zu. Nach den vorliegenden Untersuchungen scheint es jedoch so zu sein, dass die Spektroskopie ein wirklich objektives Verfahren ist, welches in der Lage ist, sehr genau degenerativ veränderte Gelenkareale zu identifizieren und damit eine Aussage in Bezug auf den wirklichen Degenerationsgrad des Gelenks zuzulassen.

Abstract

Purpose: This study was aimed to evaluate the meaningfulness of the MRI Score WORMS (Whole Organ Magnetic Resonance Imaging), the arthroscopic WOAKS (Whole Organ Arthroscopic Knee Score) and the result of NIRS (near-infrared spectroscopy) measurements. Materials and methods: A total of 49 patients with knee pain (> 3 months) underwent MRI with a standardised protocol. In the results the WORMS was calculated. The WOAKS was calculated from the results of an arthroscopic evaluation. In the same procedure, NIRS measurements were performed in the identical 14 regions of interest. From these measurements, the WOAKS_NIRS was calculated. Results: The highest grade of degeneration in all evaluations was found in the patella. The medial compartment showed moderate lesions compared with the lateral compartment. The relative WORMS was only 3.7 % (95 % CI 2.8–4.6; 0–15.6 %). During arthroscopy, we calculated a mean WOAKS of 15.2 % (95 % CI 13.2–17.2; 5–39 %). The degree of joint degeneration was highest in NIRS measurements. The mean WOAKS_NIRS was 50.9 % (95 % CI 48.1–53.7 %). These differences are significant (p < 0.001). Conclusion: The methods to detect early cartilage degenerations in MRI are flawed. Thus in our patients, we detected a full grade of degeneration in only 3.7 % of the patients. Arthroscopy mostly gives higher damage within the knee joint. The initial stages of cartilage lesion are usually undetectable. Spectroscopy has the best sensitivity for the evaluation of early degeneration within the hyaline cartilage. The clinical relevance of our results is still unclear. Further outcome studies are needed.

 
  • Literatur

  • 1 Sharma L, Kapoor D, Issa S. Epidemiology of osteoarthritis: an update. Curr Opin Rheumatol 2006; 18: 147-156
  • 2 Hempfling H, Bohndorf K, Roemer F. [Acute, traumatic versus chronic cartilage lesions as terms of a medical expertʼs opinion]. Z Orthop Unfall 2008; 146: 381-391
  • 3 Bittersohl B, Kircher J, Miese FR et al. T2* mapping and delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) of humeral articular cartilage-a histologically controlled study. J Shoulder Elbow Surg 2015; 10: 1644-1652
  • 4 Guermazi A, Alizai H, Crema MD et al. MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarthritis Cartilage 2015; 10: 1639-1653
  • 5 Baykal D, Irrechukwu O, Lin PC et al. Nondestructive assessment of engineered cartilage constructs using near-infrared spectroscopy. Appl Spectrosc 2010; 64: 1160-1166
  • 6 Bigio IJ, Mourant JR, Los G. Noninvasive, in-situ measurement of drug concentrations in tissue using optical spectroscopy. J Gravit Physiol 1999; 6: 173-175
  • 7 Brown CP, Jayadev C, Glyn-Jones S et al. Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy. Phys Med Biol 2011; 56: 2299-2307
  • 8 Guenther D, Liu C, Horstmann H et al. Near-infrared spectroscopy correlates with established histological scores in a miniature pig model of cartilage regeneration. Open Orthop J 2014; 8: 93-99
  • 9 Hofmann GO, Marticke J, Grossstuck R et al. Detection and evaluation of initial cartilage pathology in man: a comparison between MRT, arthroscopy and near-infrared spectroscopy (NIR) in their relation to initial knee pain. Pathophysiology 2010; 17: 1-8
  • 10 Johansson A, Sundqvist T, Kuiper JH et al. A spectroscopic approach to imaging and quantification of cartilage lesions in human knee joints. Phys Med Biol 2011; 56: 1865-1878
  • 11 Lai WF, Chang CH, Tang Y et al. Early diagnosis of osteoarthritis using cathepsin B sensitive near-infrared fluorescent probes. Osteoarthritis Cartilage 2004; 12: 239-244
  • 12 Marticke JK, Hösselbarth A, Hoffmeier KL et al. How do visual, spectroscopic and biomechanical changes of cartilage correlate in osteoarthritic knee joints?. Clin Biomech (Bristol, Avon) 2010; 25: 332-340
  • 13 Padalkar MV, Spencer RG, Pleshko N. Near infrared spectroscopic evaluation of water in hyaline cartilage. Ann Biomed Eng 2013; 41: 2426-2436
  • 14 Stumpfe ST, Pester JK, Steinert S et al. Is there a correlation between biophotonical, biochemical, histological, and visual changes in the cartilage of osteoarthritic knee-joints?. Muscles Ligaments Tendons J 2013; 3: 157-165
  • 15 Cole BJ, Malek MM. Articular Cartilage Lesions. A Practical Guide to Assessment and Treatment. New York, Berlin, Heidelberg, Hongkong, London, Milan, Paris, Tokio: Springer; 2004
  • 16 Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 2003; 85-A (Suppl. 02) S58-S69
  • 17 Vallotton JA, Meuli RA, Leyvraz PF et al. Comparison between magnetic resonance imaging and arthroscopy in the diagnosis of patellar cartilage lesions: a prospective study. Knee Surg Sports Traumatol Arthrosc 1995; 3: 157-162
  • 18 Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957; 16: 494-502
  • 19 Niemeyer P, Salzmann GM, Hirschmüller A et al. [Factors that influence clinical outcome following autologous chondrocyte implantation for cartilage defects of the knee]. Z Orthop Unfall 2012; 150: 83-88
  • 20 Niemeyer P, Andereya S, Angele P et al. [Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Tissue Regeneration” of the German Society of Orthopaedic Surgery and Traumatology (DGOU)]. Z Orthop Unfall 2013; 151: 38-47
  • 21 Peterfy CG, Guermazi A, Zaim S et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 2004; 12: 177-190
  • 22 Hunter DJ, Lo GH, Gale D et al. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis 2008; 67: 206-211
  • 23 Dougados M, Ayral X, Listrat V et al. [Proposal for a classification of cartilagenous lesions of the knee by the French Society of Arthroscopy]. Acta Orthop Belg 1994; 60 (Suppl. 01) S7-S16
  • 24 Spahn G, Mückley T, Klinger HM et al. Whole-Organ Arthroscopic Knee Score (WOAKS). BMC Musculoskelet Disord 2008; 9: 155
  • 25 Crema MD, Felson DT, Roemer FW et al. Prevalent cartilage damage and cartilage loss over time are associated with incident bone marrow lesions in the tibiofemoral compartments: the MOST study. Osteoarthritis Cartilage 2013; 21: 306-313
  • 26 Felson DT, Niu J, Guermazi A et al. Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum 2007; 56: 2986-2992
  • 27 Phan CM, Link TM, Blumenkrantz G et al. MR imaging findings in the follow-up of patients with different stages of knee osteoarthritis and the correlation with clinical symptoms. Eur Radiol 2006; 16: 608-618
  • 28 Dahill M, Stevenson AJ, Hughes AM et al. Comparison of arthroscopic and MRI findings of osteochondral damage in knees. Bull Hosp Jt Dis (2013) 2014; 72: 284-287
  • 29 Jarraya M, Hayashi D, Guermazi A et al. Susceptibility artifacts detected on 3 T MRI of the knee: frequency, change over time and associations with radiographic findings: data from the joints on glucosamine study. Osteoarthritis Cartilage 2014; 22: 1499-1503
  • 30 Reed ME, Villacis DC, Hatch GF et al. 3.0-Tesla MRI and arthroscopy for assessment of knee articular cartilage lesions. Orthopedics 2013; 36: e1060-e1064
  • 31 Roemer FW, Guermazi A, Trattnig S et al. Whole joint MRI assessment of surgical cartilage repair of the knee: cartilage repair osteoarthritis knee score (CROAKS). Osteoarthritis Cartilage 2014; 22: 779-799
  • 32 von Engelhardt LV, Lahner M, Klussmann A et al. Arthroscopy vs. MRI for a detailed assessment of cartilage disease in osteoarthritis: diagnostic value of MRI in clinical practice. BMC Musculoskelet Disord 2010; 11: 75
  • 33 Ayral X, Gueguen A, Ike RW et al. Inter-observer reliability of the arthroscopic quantification of chondropathy of the knee. Osteoarthritis Cartilage 1998; 6: 160-166
  • 34 Brismar BH, Wredmark T, Movin T et al. Observer reliability in the arthroscopic classification of osteoarthritis of the knee. J Bone Joint Surg Br 2002; 84: 42-47
  • 35 Jerosch J, Castro WH, de Waal Malefijt MC et al. [Interobserver variation in diagnostic arthroscopy of the knee joint. “How really objective are arthroscopic findings?”]. Unfallchirurg 1997; 100: 782-786
  • 36 Spahn G, Felmet G, Baumgarten G et al. [Evaluation of cartilage degeneration by near infrared spectroscopy (NIRS): methodical description and systematic literature review]. Z Orthop Unfall 2013; 151: 31-37
  • 37 Hunter DJ, Zhang W, Conaghan PG et al. Systematic review of the concurrent and predictive validity of MRI biomarkers in OA. Osteoarthritis Cartilage 2011; 19: 557-588
  • 38 Lynch JA, Roemer FW, Nevitt MC et al. Comparison of BLOKS and WORMS scoring systems part I. Cross sectional comparison of methods to assess cartilage morphology, meniscal damage and bone marrow lesions on knee MRI: data from the osteoarthritis initiative. Osteoarthritis Cartilage 2010; 18: 1393-1401
  • 39 Quatman CE, Hettrich CM, Schmitt LC et al. The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review. Am J Sports Med 2011; 39: 1557-1568
  • 40 Hafezi-Nejad N, Zikria B, Eng J et al. Predictive value of semi-quantitative MRI-based scoring systems for future knee replacement: data from the osteoarthritis initiative. Skeletal Radiol 2015; 11: 1655-1662
  • 41 Spahn G, Hofmann GO. [Focal cartilage defects within the medial knee compartment: predictors for osteoarthritis progression]. Z Orthop Unfall 2014; 152: 480-488
  • 42 Wong S, Steinbach L, Zhao J et al. Comparative study of imaging at 3.0 T versus 1.5 T of the knee. Skeletal Radiol 2009; 38: 761-769
  • 43 Dam EB, Lillholm M, Marques J et al. Automatic segmentation of high- and low-field knee MRIs using knee image quantification with data from the osteoarthritis initiative. J Med Imaging (Bellingham) 2015; 2: 024001
  • 44 Pang J, Li P, Qiu M et al. Automatic articular cartilage segmentation based on pattern recognition from knee MRI images. J Digit Imaging 2015; 28: 695-703
  • 45 Horng A, Raya J, Zscharn M et al. [Locoregional deformation pattern of the patellar cartilage after different loading types – high-resolution 3D-MRI volumetry at 3 T in-vivo]. Rofo 2011; 183: 432-440
  • 46 Spahn G, Klinger HM, Baums M et al. Near-infrared spectroscopy for arthroscopic evaluation of cartilage lesions: results of a blinded, prospective, interobserver study. Am J Sports Med 2010; 38: 2516-2521