Semin Musculoskelet Radiol 2021; 25(03): 455-467
DOI: 10.1055/s-0041-1730400
Review Article

3D MRI of the Knee

Faysal Altahawi
1   Section of Musculoskeletal Imaging, Imaging Institute, Cleveland Clinic, Cleveland, Ohio
,
Jason Pierce
2   Diagnostic Radiology Residency, Imaging Institute, Cleveland Clinic, Cleveland, Ohio
,
Mercan Aslan
1   Section of Musculoskeletal Imaging, Imaging Institute, Cleveland Clinic, Cleveland, Ohio
,
Xiaojuan Li
1   Section of Musculoskeletal Imaging, Imaging Institute, Cleveland Clinic, Cleveland, Ohio
3   Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
,
Carl S. Winalski
1   Section of Musculoskeletal Imaging, Imaging Institute, Cleveland Clinic, Cleveland, Ohio
3   Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
,
Naveen Subhas
1   Section of Musculoskeletal Imaging, Imaging Institute, Cleveland Clinic, Cleveland, Ohio
› Author Affiliations

Abstract

Three-dimensional (3D) magnetic resonance imaging (MRI) of the knee is widely used in musculoskeletal (MSK) imaging. Currently, 3D sequences are most commonly used for morphological imaging. Isotropic 3D MRI provides higher out-of-plane resolution than standard two-dimensional (2D) MRI, leading to reduced partial volume averaging artifacts and allowing for multiplanar reconstructions in any plane with any thickness from a single high-resolution isotropic acquisition. Specifically, isotropic 3D fast spin-echo imaging, with options for tissue weighting similar to those used in multiplanar 2D FSE imaging, is of particular interest to MSK radiologists. New applications for 3D spatially encoded sequences are also increasingly available for clinical use. These applications offer advantages over standard 2D techniques for metal artifact reduction, quantitative cartilage imaging, nerve imaging, and bone shape analysis. Emerging fast imaging techniques can be used to overcome the long acquisition times that have limited the adoption of 3D imaging in clinical protocols.



Publication History

Article published online:
21 September 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Shakoor D, Guermazi A, Kijowski R. et al. Diagnostic performance of three-dimensional MRI for depicting cartilage defects in the knee: a meta-analysis. Radiology 2018; 289 (01) 71-82
  • 2 Shakoor D, Kijowski R, Guermazi A. et al. Diagnosis of knee meniscal injuries by using three-dimensional MRI: a systematic review and meta-analysis of diagnostic performance. Radiology 2019; 290 (02) 435-445
  • 3 Altahawi F, Subhas N. 3D MRI in musculoskeletal imaging: current and future applications. Curr Radiol Rep 2018; 6 (08) 27
  • 4 Kijowski R, Davis KW, Woods MA. et al. Knee joint: comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging—diagnostic performance compared with that of conventional MR imaging at 3.0 T. Radiology 2009; 252 (02) 486-495
  • 5 Subhas N, Kao A, Freire M, Polster JM, Obuchowski NA, Winalski CS. MRI of the knee ligaments and menisci: comparison of isotropic-resolution 3D and conventional 2D fast spin-echo sequences at 3 T. AJR Am J Roentgenol 2011; 197 (02) 442-450
  • 6 Jung JY, Yoon YC, Kwon JW, Ahn JH, Choe BK. Diagnosis of internal derangement of the knee at 3.0-T MR imaging: 3D isotropic intermediate-weighted versus 2D sequences. Radiology 2009; 253 (03) 780-787
  • 7 Ristow O, Steinbach L, Sabo G. et al. Isotropic 3D fast spin-echo imaging versus standard 2D imaging at 3.0 T of the knee—image quality and diagnostic performance. Eur Radiol 2009; 19 (05) 1263-1272
  • 8 Kijowski R, Blankenbaker DG, Woods M, Del Rio AM, De Smet AA, Reeder SB. Clinical usefulness of adding 3D cartilage imaging sequences to a routine knee MR protocol. AJR Am J Roentgenol 2011; 196 (01) 159-167
  • 9 Crema MD, Roemer FW, Marra MD. et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 2011; 31 (01) 37-61
  • 10 Van Dyck P, Gielen JL, Vanhoenacker FM. et al. Diagnostic performance of 3D SPACE for comprehensive knee joint assessment at 3 T. Insights Imaging 2012; 3 (06) 603-610
  • 11 Talbot BS, Weinberg EP. MR imaging with metal-suppression sequences for evaluation of total joint arthroplasty. Radiographics 2016; 36 (01) 209-225
  • 12 Garwood ER, Recht MP, White LM. Advanced imaging techniques in the knee: benefits and limitations of new rapid acquisition strategies for routine knee MRI. AJR Am J Roentgenol 2017; 209 (03) 552-560
  • 13 Chhabra A, Madhuranthakam AJ, Andreisek G. Magnetic resonance neurography: current perspectives and literature review. Eur Radiol 2018; 28 (02) 698-707
  • 14 Madhuranthakam AJ, Lenkinski RE. Technical advancements in MR neurography. Semin Musculoskelet Radiol 2015; 19 (02) 86-93
  • 15 Ahlawat S, Carrino JA. Three-dimensional imaging of lower limb neuropathies. Semin Musculoskelet Radiol 2015; 19 (02) 168-178
  • 16 Gustas CN, Blankenbaker DG, Rio AM, Winalski CS, Kijowski R. Evaluation of the articular cartilage of the knee joint using an isotropic resolution 3D fast spin-echo sequence with conventional and radial reformatted images. AJR Am J Roentgenol 2015; 205 (02) 371-379
  • 17 Wáng Y-XJ, Zhang Q, Li X, Chen W, Ahuja A, Yuan J. T1ρ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging. Quant Imaging Med Surg 2015; 5 (06) 858-885
  • 18 de Mello R, Ma Y, Ji Y, Du J, Chang EY. Quantitative MRI musculoskeletal techniques: an update. AJR Am J Roentgenol 2019; 213 (03) 524-533
  • 19 Guermazi A, Alizai H, Crema MD, Trattnig S, Regatte RR, Roemer FW. Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarthritis Cartilage 2015; 23 (10) 1639-1653
  • 20 Roemer FW, Crema MD, Trattnig S, Guermazi A. Advances in imaging of osteoarthritis and cartilage. Radiology 2011; 260 (02) 332-354
  • 21 Recht MP, Zbontar J, Sodickson DK. et al. Using deep learning to accelerate knee MRI at 3 T: results of an interchangeability study. AJR Am J Roentgenol 2020; 215 (06) 1421-1429
  • 22 Subhas N, Li H, Yang M. et al. Diagnostic interchangeability of deep convolutional neural networks reconstructed knee MR images: preliminary experience. Quant Imaging Med Surg 2020; 10 (09) 1748-1762
  • 23 Gaj S, Yang M, Nakamura K, Li X. Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks. Magn Reson Med 2020; 84 (01) 437-449
  • 24 Kalia V, Fritz B, Johnson R, Gilson WD, Raithel E, Fritz J. CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons. Eur Radiol 2017; 27 (09) 3652-3661
  • 25 Altahawi FF, Blount KJ, Morley NP, Raithel E, Omar IM. Comparing an accelerated 3D fast spin-echo sequence (CS-SPACE) for knee 3-T magnetic resonance imaging with traditional 3D fast spin-echo (SPACE) and routine 2D sequences. Skeletal Radiol 2017; 46 (01) 7-15
  • 26 Fritz J, Ahlawat S, Demehri S. et al. Compressed sensing SEMAC: 8-fold accelerated high resolution metal artifact reduction MRI of cobalt-chromium knee arthroplasty implants. Invest Radiol 2016; 51 (10) 666-676
  • 27 Fritz J, Raithel E, Thawait GK, Gilson W, Papp DF. Six-fold acceleration of high-spatial resolution 3D SPACE MRI of the knee through incoherent k-space undersampling and iterative reconstruction—first experience. Invest Radiol 2016; 51 (06) 400-409
  • 28 Kijowski R, Gold GE. Routine 3D magnetic resonance imaging of joints. J Magn Reson Imaging 2011; 33 (04) 758-771
  • 29 Naraghi A, White LM. Three-dimensional MRI of the musculoskeletal system. AJR Am J Roentgenol 2012; 199 (03) W283-293
  • 30 Gold GE, Fuller SE, Hargreaves BA, Stevens KJ, Beaulieu CF. Driven equilibrium magnetic resonance imaging of articular cartilage: initial clinical experience. J Magn Reson Imaging 2005; 21 (04) 476-481
  • 31 Duc SR, Koch P, Schmid MR, Horger W, Hodler J, Pfirrmann CW. Diagnosis of articular cartilage abnormalities of the knee: prospective clinical evaluation of a 3D water-excitation true FISP sequence. Radiology 2007; 243 (02) 475-482
  • 32 Chen CA, Kijowski R, Shapiro LM. et al. Cartilage morphology at 3.0T : assessment of three-dimensional MR imaging techniques. J Magn Reson 2010; 32 (01) 173-183
  • 33 Busse RF, Hariharan H, Vu A, Brittain JH. Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 2006; 55 (05) 1030-1037
  • 34 Gold GE, Busse RF, Beehler C. et al. Isotropic MRI of the knee with 3D fast spin-echo extended echo-train acquisition (XETA): initial experience. AJR Am J Roentgenol 2007; 188 (05) 1287-1293
  • 35 Pass B, Robinson P, Hodgson R, Grainger AJ. Can a single isotropic 3D fast spin echo sequence replace three-plane standard proton density fat-saturated knee MRI at 1.5 T?. Br J Radiol 2015; 88 (1052): 20150189
  • 36 Del Grande F, Delcogliano M, Guglielmi R. et al. Fully automated 10-minute 3D CAIPIRINHA SPACE TSE MRI of the knee in adults: a multicenter, multireader, multifield-strength validation study. Invest Radiol 2018; 53 (11) 689-697
  • 37 Kijowski R, Davis KW, Blankenbaker DG, Woods MA, Del Rio AM, De Smet AA. Evaluation of the menisci of the knee joint using three-dimensional isotropic resolution fast spin-echo imaging: diagnostic performance in 250 patients with surgical correlation. Skeletal Radiol 2012; 41 (02) 169-178
  • 38 Zuo J, Li X, Banerjee S, Han E, Majumdar S. Parallel imaging of knee cartilage at 3 Tesla. J Magn Reson Imaging 2007; 26 (04) 1001-1009
  • 39 Fripp J, Crozier S, Warfield SK, Ourselin S. Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee. IEEE Trans Med Imaging 2010; 29 (01) 55-64
  • 40 Xia Y, Fripp J, Chandra SS, Walker D, Crozier S, Engstrom C. Automated 3D quantitative assessment and measurement of alpha angles from the femoral head-neck junction using MR imaging. Phys Med Biol 2015; 60 (19) 7601-7616
  • 41 Mars M, Chelli M, Tbini Z, Ladeb F, Gharbi S. MRI T2 mapping of knee articular cartilage using different acquisition sequences and calculation methods at 1.5 Tesla. Med Princ Pract 2018; 27 (05) 443-450
  • 42 Chhabra A, Lee PP, Bizzell C, Soldatos T. 3 Tesla MR neurography—technique, interpretation, and pitfalls. Skeletal Radiol 2011; 40 (10) 1249-1260
  • 43 Zare M, Faeghi F, Hosseini A, Ardekani MS, Heidari MH, Zarei E. Comparison between three-dimensional diffusion-weighted PSIF technique and routine imaging sequences in evaluation of peripheral nerves in healthy people. Basic Clin Neurosci 2018; 9 (01) 65-71
  • 44 Liu F, Zhou Z, Jang H, Samsonov A, Zhao G, Kijowski R. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn Reson Med 2018; 79 (04) 2379-2391
  • 45 Ashinsky BG, Bouhrara M, Coletta CE. et al. Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative. J Orthop Res 2017; 35 (10) 2243-2250
  • 46 Fritz J, Fritz B, Thawait GG, Meyer H, Gilson WD, Raithel E. Three-dimensional CAIPIRINHA SPACE TSE for 5-minute high-resolution MRI of the knee. Invest Radiol 2016; 51 (10) 609-617
  • 47 Pandit P, Rivoire J, King K, Li X. Accelerated T1ρ acquisition for knee cartilage quantification using compressed sensing and data-driven parallel imaging: a feasibility study. Magn Reson Med 2016; 75 (03) 1256-1261