Thorac Cardiovasc Surg 2000; 48(1): 46-54
DOI: 10.1055/s-2000-12142
Cardiovascular Review
© Georg Thieme Verlag Stuttgart · New York

Myocardial Protection In Hypoxic Immature Hearts[1]

K. Ihnken
  • Stanford University Hospital, Stanford, CA, USA
Further Information

Publication History

Publication Date:
31 December 2000 (online)

Current myocardial protection techniques in cyanotic immature hearts are not optimal. Despite successful surgical correction of congenital cardiac defects causing hypoxemia, myocardial dysfunction remains the leading cause of postoperative mortality. New studies indicate that the intraoperative reintroduction of molecular oxygen on cardiopulmonary bypass causes a reoxygenation injury leading to postoperative cardiac dysfunction. Biochemical and functional changes of reoxygenation injury can be avoided by several methods aimed at reducing oxygen free radical production and nitric oxide release. The present investigation provides an overview of our current understanding of pathogenesis, implication, and treatment of myocardial reoxygenation injury. New surgical concepts of myocardial protection including normoxic CPB and controlled reoxygenation are introduced.

1 Based on the paper awarded the Ernst-Derra Prize 1997 by the German Society for Thoracic and Cardiovascular Surgery

References

  • 1 Ihnken K, Morita K, Buckberg G D, Matheis G, Sherman M P, Allen B S, Young H H. Studies of hypoxemic/reoxygenation injury: Without aortic clamping. II. Evidence for reoxygenation damage.  J Thorac Cardiovasc Surg.. 1995;  110 1171-81
  • 2 Del Nido P J, Mickle D AG, Wilson G J, Benson L N, Coles J G, Trusler G A, Williams W G. Evidence of myocardial free radical injury during elective repair of tetralogy of Fallot.  Circulation.. 1987;  76 (suppl V) V174-9
  • 3 Del Nido R J, Mickle D AG, Wilson G J, Benson L N, Weisel R D, Coles J G, Trusler G A, Williams W G. Inadequate myocardial protection with cold cardioplegic arrest during repair of tetralogy of Fallot.  J Thoracic Cardiovasc Surg.. 1988;  95 223-9
  • 4 Fujiwara T, Kurtts T, Anderson W, Heinle J, Mayer J E. Myocardial protection in cyanotic neonatal lambs.  J Thorac Cardiovasc Surg.. 1988;  96 700-10
  • 5 Silverman N A, Kohler J, Levitsky S, Pavel D G, Fang R B, Feinberg H. Chronic hypoxemia depresses global ventricular function and predisposes to the depletion of high-energy phosphates during cardioplegic arrest: Implications for surgical repair of cyanotic congenital heart defects.  Ann Thorac Surg.. 1984;  37 304-8
  • 6 Teoh K H, Mickle D AG, Weisel R D, Li R, Tumiati L C, Coles J G, Williams W G. Effect of oxygen tension and cardiovascular operations on the myocardial antioxidant enzyme activities in patients with tetralogy of Fallot and aorta-coronary bypass.  J Thoracic Cardiovasc Surg.. 1992;  104 159-64
  • 7 Ihnken K, Morita K, Buckberg G D, Sherman M P, Ignarro L J, Young H H. Studies of hypoxemic/reoxygenation injury: With aortic clamping. XIII. Interaction between oxygen tension and cardioplegic composition in limiting nitric oxide production and oxidant damage.  J Thorac Cardiovasc Surg.. 1995;  110 1274-86
  • 8 Bull C, Cooper J, Stark J. Cardioplegic protection of the child's heart.  J Thorac Cardiovasc Surg.. 1984;  88 287-93
  • 9 Kofsky E, Julia P, Buckberg G D, Young H H, Tixier D. Studies of myocardial protection in the immature heart V safety of prolonged aortic clamping wich hypocalcemic glutamate/aspartate Blood cardioplcgia.  J Thorac Cardiovasc Surg.. 1991;  101 33-43
  • 10 Cosgrove D M, Loop F D, Lytle B W, Baillot R, Gill C C, Golding L AR, Taylor P C, Goormastic M. Primary myocardial revascularization trends in surgical mortality.  J Thorac Cardiovasc Surg.. 1984;  88 673-84
  • 11 Rudolph W. Myocardial metabolism in cyanotic congenital heart discase.  Cardiology.. 1972;  56 209-15
  • 12 Ascuitto R J, Ross-Ascuitto N T, Ramage D, McDonought K H. Mechanical function and fatty acid oxidation in the neonatal pig heart with ischemia and reperfusion.  J Develop Physiol.. 1990;  14 249-57
  • 13 Jarmakani J M, Nagatomo T, Nakazawa M, Langer G A. Effect of hypoxia on myocardial high-energy phosphates in the neonatal mammalian heart.  Am J Physiol.. 1978;  235 H475-81
  • 14 Julia P L, Kofsky E R, Buckberg G D, Young H H, Bugyi H I. Studies of myocardial protection in the immature heart. I. Enhanced tolerance of immature versus adult myocardium to global ischemia with reference to metabolic differences.  J Thorac Cardiovasc Surg.. 1990;  100 879-87
  • 15 Ihnken K, Morita K, Buckberg G D, Sherman M P, Young H H. Studies of hypoxemic/reoxygenation injury: Without aortic clamping. III. Comparison of the magnitude of damage by hypoxemia/reoxygenation versus ischemia/reperfusion.  J Thorac Cardiovasc Surg.. 1995;  110 1182-9
  • 16 Julia P L, Kofsky E R, Buckberg G D, Young H H, Bugyi H I. Studies of myocardial protection in the immature heart. III. Models of ischemic and hypoxic/ischemic injury in the immature puppy heart.  J Thorac Cardiovasc Surg.. 1991;  101 14-22
  • 17 Julia P L, Young H H, Buckberg G D, Kofsky E R, Bugyi H I. Studies of myocardial protection in the immature heart. IV. Improved tolerance of immature myocardium to hypoxia and ischemia by intravenous metabolic support.  J Thorac Cardiovasc Surg.. 1991;  101 23-32
  • 18 Dhaliwal H, Kirshenbaum L A, Randhawa A K, Singal P K. Correlation between antioxidant changes during hypoxia and recovery on reoxygenation.  Am J Physiol.. 1991;  261 H632-8
  • 19 Kirklin J K, Blackstone E H, Kirklin J W, McKay R, Pacifico A D, Bargeron L J Jr. Intracardiac surgery in infants under age 3 months: Incremental risk factors for hospital mortality.  Am J Cardiol. . 1981;  48 500-6
  • 20 Hirschl R B, Heiss K F, Bartlett R H. Severe myocardial dysfunction during extracorporeal membrane oxygenation.  J Pediatric Surgery.. 1992;  27 48-53
  • 21 Martin G R, Short B L, Abbott C, O'Brien A N. Cardiac stun in infants undergoing extracorporeal membrane oxygenation.  J Thorac Cardiovasc Surg.. 1991;  101 607-11
  • 22 Halliwell B. Oxidants and human discase: Some new concepts.  Fed Am Soc Exp Biol.. 1987;  1 358-64
  • 23 Hearse D J, Hymphrey S M, Chain E B. Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: A study of myocardial enzyme release.  J Mol Cell Cardiol.. 1973;  5 395-407
  • 24 Allen B S, Rahman S, Ilbawi M N, Kronon M, Bolling K S, Halldorsson A O, Feinberg H. Detrimental effects of cardiopulmonary bypass in cyanotic infants: preventing the reoxygenation injury.  Ann Thorac Surg.. 1997;  64 1381-8
  • 25 Freeman B A, Topolosky M K, Crapo J D. Hyperoxia increases oxygen radical production in rat lung homogenates.  Arch Biochem Biophy.. 1982;  216 477-84
  • 26 Ganote C E, Kaltenbach J P. Oxygen-induced enzyme release: Early events and proposed mechanism.  J Cel Moll Cardiol.. 1979;  11 389-406
  • 27 Morita K, Ihnken K, Buckberg G D, Sherman M P, Ignarro I J. Pulmonary vasoconstriction due to impaired nitric oxide production after cardiopulmonary bypass.  Ann Thorac Surg.. 1996;  61 1775-80
  • 28 Ihnken K, Winkler A, Schlensak C, Sarai K, Neidhart G, Unkelbach U, Mülsch A, Sewell A. Normoxic cardiopulmonary bypass reduces oxidative myocardial damage and nitric oxide during cardiac operations in the adult.  J Thorac Cardiovasc Surg.. 1998;  116 327-34
  • 29 Frank L, Massaro D. Oxygen toxicity.  Am J Med.. 1980;  69 117-26
  • 30 Littauer A, De Groot H. Release of reactive oxygen by hepatocytes on reoxygenation: three phases and role of mitochondria.  Am J Physiol.. 1992;  262 G1015-20
  • 31 Sher P K, Hu S. Neuroprotective effect of graded reoxygenation following chronic hypoxia in neuronal cell cultures.  Neuroscience.. 1992;  47 979-984
  • 32 Deneke S M, Fanburg B L. Normobaric oxygen toxicity of the lung.  New Engl J Med.. 1980;  303 76-86
  • 33 Lum H, Barr D A, Shaffer J R, Gordon R J, Ezrin A M, Malik A B. Reoxygenation of endothelial cells increases permiability by oxidant-dependent mechanisms.  Circ Res.. 1992;  70 991-8
  • 34 Piper H M, Siegmund B, Schlüter K D. Prevention of the oxygen paradox in the isolated cardiomyocyte and the whole heart.  A J Cardiovasc Pathol.. 1992;  4 115-22
  • 35 Guarnieri C, Flamigni F, Caldarera C M. Role of oxygen in the cellular damage induced by re-oxygenation of hypoxic heart.  J Mol Cell Cardiol.. 1980;  12 797-808
  • 36 Fujiwara T, Kurtts T, Anderson W, Heinle J, Mayer J E. Myocardial protection in cyanotic neonatal lambs.  J Thorac Cardiovasc Surg.. 1988;  96 700-10
  • 37 Lupinetti F M, Wareing T H, Huddleston C B, Collins J C, Boucek R J, Bender H W Jr, Hammon J W Jr. Pathophysiology of chronic cyanosis in a canine model.  J Thorac Cardiovasc Surg.. 1985;  90 291-6
  • 38 Li R K, Mickle D AG, Weisel R D, Tumiati L C, Jackowski G, Wu T W, Williams W G. Effect of oxygen tension on the anti-oxidant enzyme activities of tetralogy of Fallot ventricular myocytes.  J Mol Cell Cardiol.. 1989;  21 567-75
  • 39 Sagawa K, Manghan W L, Suga H, Sunagawa K. Cardiac contraction and pressure-volumr relationship. New York; Oxford University Press 1988: 56-61 & 110 - 119
  • 40 Lesnefsky E J, Fennessey P M, Van Benthuysen K M, McMurtry I F, Travis V L, Horwitz L D. Superoxide dismutase decreases early reperfusion release of conjugated dienes following regional canine ischemia.  Basic Res Cardiol.. 1989;  84 191-96
  • 41 Godin D V, Ko K M, Garnett M E. Altered antioxidant status in the ischemic/reperfused rabbit myocardium: Effects of allopurinol.  Can J Cardiol.. 1989;  5 365-71
  • 42 Bush P A, Gonzales N E, Griscavage J M, Ignarro L J. Nitric oxide synthase from cerebellum catalyzes the formation of equimolar quantities of nitric oxide and citrulline from L-arginine.  Biochem Biophys Res Com.. 1992;  85 960-6
  • 43 Ihnken K, Morita K, Buckberg G D. Studies of hypoxemic/reoxygenation injury: With aortic clamping. XI. Cardiac advantages of normoxemic versus hyperoxemic management during cardiopulmonary bypass.  J Thorac Cardiovasc Surg.. 1995;  110 1255-64
  • 44 Ihnken K, Morita K, Buckberg G D, Beyersdorf F. Reduction of reoxygenation injury and nitric oxide production in the cyanotic immature heart by controlling pO2.  Eur J Candio-thorac Surg.. 1995;  9 410-8
  • 45 Ihnken K, Morita K, Buckberg G D, Winkelmann B, Beyersdorf F, Sherman M P. Reduced oxygen tension during cardiopulmonary bypass limits myocardial damage in acute hypoxic immature piglet hearts.  Eur J Cardio-thorac Surg.. 1996;  10 1127-35
  • 46 Ihnken K, Morita K, Buckberg G D, Ihnken O, Winkelmann B, Sherman M P. Prevention of reoxygenation injury in hypoxaemic immature hearts by priming the extracorporeal circuit with antioxidants.  Cardiovasc Surg.. 1997;  5 608-19
  • 47 Morita K, Ihnken K, Buckberg G D, Sherman M P, Young H H. Studies of hypoxemic/reoxygenation injury: Without aortic clamping. IV. Role of the iron-catalyzed pathway: Deferoxamine.  J Thorac Cardiovasc Surg.. 1995;  110 1190-9
  • 48 Ihnken K, Morita K, Buckberg G D, Sherman M P, Young H H. Studies of hypoxemic/reoxygenation injury: Without aortic clamping. VI. Counteraction of oxidant damage by exogenous antioxidants: N-(2-mercaptopropionyl)- glycine and catalase.  J Thorac Cardiovasc Surg.. 1995;  110 1212-20
  • 49 Morita K, Ihnken K, Buckberg G D, Sherman M P, Young H H. Studies of hypoxemic/reoxygenation injury: Without aortic clamping. VII. Countcraction of oxidant damage by exogenous antioxidants: Coenzyme Q10.  J Thorac Cardiovasc Surg.. 1995;  110 1221-27
  • 50 Morita K, Ihnken K, Buckberg G D, Matheis G, Sherman M P, Young H H. Studies of hypoxemic/reoxygenation injury: With aortic clamping. X. Exogenous antioxidants to avoid nullification of the cardioprotective effects of blood cardioplegia.  J Thorac Cardiovasc Surg.. 1995;  110 1245-54
  • 51 Ihnken K, Morita K, Buckberg G D, Winkelmann G D, Schmitt M, Ignarro L J, Sherman M P. Nitric Oxide induced reoxygenation injury in the cyanotic immature heart is prevented by controlling oxygen content during initial reoxygenation.  Angiology.. 1997;  48 189-202
  • 52 Morita K, Matheis G, Buckberg G D, Ihnken K, Sherman M P, Young H H, Ignarro L J. Studies of hypoxemic/reoxygenation injury: Without aortic clamping. V. Role of the L-arginine-nitric oxide pathway: The nitric oxide paradox.  J Thorac Cardiovasc Surg.. 1995;  110 1200-11
  • 53 Morita K, Ihnken K, Buckberg G D, Sherman M P, Young H H, Ignarro L J. Role of controlled cardiac reoxygenation in reducing nitric oxide production and cardiac oxidant damage in cyanotic infantile hearts.  J Clin Invest.. 1994;  93 2658-66
  • 54 Ihnken K, Morita K, Buckberg G D. Delayed cardioplegic reoxygenation reduces reoxygenation injury in cyanotic immature hearts.  Ann Thorac Surg.. 1998;  66 177-82
  • 55 Morita K, Ihnken K, Buckberg G D, Sherman M P, Young H H. Studies of hypoxemic/reoxygenation injury: Without aortic clamping. IX. Importance of avoiding perioperative hyperoxemia in the setting of previous cyanosis.  J Thorac Cardiovasc Surg.. 1995;  110 1235-44
  • 56 Morita K, Ihnken K, Buckberg G D. Studies of hypoxemic/reoxygenation injury: With aortic clamping. XII. Delay of cardiac reoxygenation damage in the presence of cyanosis: A new concept of controlled cardiac reoxygenation.  J Thorac Cardiovasc Surg.. 1995;  110 1265-73
  • 57 Ihnken K, Matheis G, Winkelmann B, Beyersdorf F. Die Bedeutung der Myokardprotektion in der Herzchirurgie.  Zeitschrift für Allgemeinmedizin.. 1995;  71 99-106
  • 58 Buckberg G D. Studies of controlled reperfusion after ischemia: A series of experimental and clinical observations from the Division of Thoracic Surgery, UCLA School of Medicine, Los Angeles, California.  J Thorac Cardiovasc Surg.. 1986;  92 483-648
  • 59 Kraemer R, Mullane K M. Neutrophils delay functional recovery of the post-hypoxic heart of the rabbit.  J Pharmacol Exp Therap.. 1989;  251 620-6
  • 60 Hearse D J, Humphrey S M, Nayler W G, Slade A, Border D. Ultrastructural damage associated wich reoxygenation of the anoxic myocardium.  J Mol Cell Cardiol.. 1975;  7 315-24
  • 61 Bolli R, Jeroudi M O, Patel B S. et al . Direct evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in the intact dog.  Proc Natl Acad Sci USA.. 1989;  86 4695-9
  • 62 Gauduel Y, Duvelleroy A. Role of oxygen radicals in cardiac injury due to reoxygenation.  J Moll Cardiol.. 1984;  16 459-70
  • 63 Davies M J. Applications of electron spin resonance spectroscopy to the identification of radicals produced during lipid peroxidation.  Chemistry and Physics of Lipids.. 1987;  44 149-73
  • 64 Schlüter K D, Schwartz P, Siegmund B, Piper H M. Prevention of the oxygen paradox in hypoxic-reoxygenated hearts.  Am J Physiol.. 1991;  261 H416-23
  • 65 Beckman J S, Beckman T W, Chen J, Marshall P A, Freeman B A. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide.  Proc Natl Acad Sci.. 1990;  87 1620-4
  • 66 Brady A JB, Poole-Wilson P, Harding S E, Warren J B. Nitric oxide production within cardiac myocytes reduces their contractility in endotoxemia.  Am J Physiol.. 1992;  263 H1963-6
  • 67 Radi R, Beckman J S, Bush K M, Freeman B A. Peroxynitrite oxidation of sulfhydrils. The cytotoxic potential of superoxide and nitric oxide.  J Biol Chem.. 1991;  266 4244-50
  • 68 Rengasamy A, Johns R A. Characterization of endothelium-derived relaxing factor/nitric oxide synthase from bovine cerebellum and mechanism of modulation by high and low oxygen tensions.  J Pharmacol Exp Therapeutics.. 1991;  259 310-6
  • 69 Kinsella J P, Neish S R, Shaffer E, Abman S H. Low-dose inhalational nitric oxide in persitent pulmonary hypertension of the newborn.  Lancet.. 1992;  340 819-20
  • 70 Moncada S, Palmer R MJ, Higgs E A. Nitric Oxide: Physiology, pathophysiology, and pharmacology.  Pharmacol Rev.. 1991;  43 109-34
  • 71 Ignarro L J. Biosynthesis and metabolism of endothelium-derived nitric oxide.  Annu Rev Phamacol Toxicol.. 1990;  30 535-60
  • 72 Kanter K R, Glower D D, Schaff H V, Gardner T J. Mechanism of defective oxygen extraction following global ischemia.  J Surg Res.. 1981;  30 482-8
  • 73 Gauduel Y, Menasche P, Duvelleroy M. Enzyme release and mitochondrial activity in reoxygenated cardiac muscle: Relationship with oxygen-induced lipid peroxidation.  General Physiological Biophysics.. 1989;  8 327-40
  • 74 Follette D M, Fey K, Buckberg G D, Helly J J, Steed D L, Foglia R P, Maloney J M Jr. Reducing postischemic damage by temporary modification of reperfusate calcium, potassium, pH, and osmolarity.  J Thorac Cardiovasc Surg.. 1981;  82 221-38
  • 75 Rosenkranz E R, Okamoto F, Buckberg G D, Vinten-Johansen J, Robertson J M, Bugyi H. Safety of prolonged aortic clamping wich blood cardioplegia II Glutamate enrichment in energy-depleted hearts.  J Thorac Cardiovasc Surg.. 1984;  88 402-10
  • 76 Grinwald P M, Brosnahan C. Sodium imbalance as a cause of calcium overload in post-hypoxic reoxygenation injury.  J Mol Cell Cardiol.. 1987;  19 487-95
  • 77 Peng C F, Kane J J, Murphy M L, Straub K D. Abnormal mitochondrial oxidative phosphorylation of ischemic myocardium reversed by Ca chelating agent.  J Mol Cell Cardiol.. 1977;  9 897-908
  • 78 Kukreja R C, Kontos H A, Hess M L, Ellis E F. PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH.  Circ Res.. 1986;  59 612-9
  • 79 Taegtmeyer H. Metabolic responses to cardiac hypoxia. Increased production of succinate by rabbit papillary muscle.  Circ Res.. 1978;  43 808-15
  • 80 Rosenkranz E R, Okamoto F, Buckberg G D, Vinten-Johansen J, Robertson J M, Bugyi H. Safety ol prolonged aortic clamping with blood cardioplegia II Glutamate enrichment in energy-depleted hearts.  J Thorac Cardiovasc Surg.. 1984;  88 402-10
  • 81 Lazar H L, Buckberg G D, Manganaro A M, Becker H. Myocardial energy replenishment and reversal of ischemic damage by substrate enhancement of secondary blood cardioplegia with amino acids during reperfusion.  J Thorac Cardiovasc Surg.. 1980;  80 350-9
  • 82 Morita K, Ihnken K, Buckberg G D, Matheis G, Sherman M P, Young H H. Studies of hypoxemic/reoxygenation injury: Without aortic clamping. VIII. Counteraction of oxidant damage by exogenous glutamate and aspartate.  J Thorac Cardiovasc Surg.. 1995;  110 1228-34
  • 83 Bogie R G, Coade S B, Moncada S, Pearson J D, Mann G E. Bradykinin and ATP stimulate L-arginine uptake and nitric oxide release in vascular endothelial cells.  Biochem Biophys Res Comms.. 1991;  180 926-32
  • 84 Sweiry J H, Munoz M, Mann G E. Cis-inhibition and trans-stimulation of cationic amino acid transport in the perfused rat pancreas.  Am J Physiol.. 1991;  261 C506-14
  • 85 Tribble D L, Jones D P. Oxygen dependence of oxidative stress. Rate of NADPH supply for maintaining the GSH pool during hypoxia.  Biochem Pharmacol.. 1990;  39 729-36
  • 86 Cavarocchi N C, England M D, Schaff H V, Russo P, Orszulak T A, Schnell W A Jr, O'Brien J F, Pluth J R. Oxygen free radical generation during cardiopulmonary bypass: correlation with complement activation.  Circulation.. 1986;  74 (suppl. III) 130-3

1 Based on the paper awarded the Ernst-Derra Prize 1997 by the German Society for Thoracic and Cardiovascular Surgery

Dr. Kai Ihnken

Stanford University Hospital

Department of Surgery

Room H3680

300 Pasteur Drive

Stanford, CA 94305

USA



Phone: 650-725-2181

Fax: 650-725-0791

    >