Int J Sports Med 2000; 21(5): 351-355
DOI: 10.1055/s-2000-3784
Physiology and Biochemistry
Georg Thieme Verlag Stuttgart · New York

Human Skeletal Muscle HSP70 Response to Physical Training Depends on Exercise Intensity

Y. Liu1 ,  W. Lormes1 ,  C. Baur1 ,  A. Opitz-Gress1 ,  D. Altenburg2 ,  M. Lehmann1 ,  J. M. Steinacker1
  • 1 Abteilung Sport- und Rehabilitationsmedizin, Universität Ulm, Ulm, Germany
  • 2 Deutscher Ruderverband, Hannover, Germany
Further Information

Publication History

Publication Date:
31 December 2000 (online)

We have previously reported that HSP70 in human skeletal muscle could be induced by training. However, whether HSP70 induction is dependent upon exercise volume or exercise intensity remains unknown. The aim of the present study was to investigate the relationship between HSP70 and training intensity in rowers. Fourteen well-trained male rowers were divided into two groups (group A, n = 6; group B, n = 8). Group A performed higher intensity exercise during 1st phase, whereas group B performed higher intensity exercise during 2nd training phase. Training volume in 2nd phase increased in both groups. Both training intensity and volume were reduced in 3rd phase. Muscle samples were taken from m. vastus lateralis by fine needle biopsy before training, at the end of the 1st, 2nd and 3rd training phases. HSP70 was quantitatively determined using SDS-PAGE with silver stain. In group A, HSP70 increased significantly from 38 ± 12 ηg before training to 59 ± 16 ηg at the end of the 1st training phase (loaded total protein 2.5 µg), and decreased afterwards. In group B, HSP70 increase (from 36 ± 11 ηg to 50 ± 13 ηg) in the 1st phase was significantly smaller, there was a further increase of HSP70 in the 2nd phase (60 ± 14 ηg). At the end of the training, HSP70 decreased in both groups. Thus, HSP70 response to training seems to be dependent upon exercise intensity.

References

  • 1 Beckmann R P, Lovett M, Welch W J. Examining the function and regulation of HSP70 in cells subjected to metabolic stress.  J Cell Biol. 1992;  117 1137-1150
  • 2 Beckmann R P, Mizzen L A, Welch W J. Interaction for protein folding and assembly.  Science. 1990;  248 850-854
  • 3 DeSeau V, Rosen N, Bolen J B. Analysis of pp60c-src tyrosine kinase activity and phosphotyrosyl phosphatase activity in human colon carcinoma and normal human colon mucosal cells.  J Cell Biochem. 1987;  35 113-128
  • 4 Heads R J, Latchman D S, Yellon D M. Stable high level expression of a transfected human HSP70 gene protects a heart-derived muscle cell line against thermal stress.  J Mol Cell Cardiol. 1994;  26 695-699
  • 5 Iwaki K, Chi S H, Dillmann W H, Mestril R. Induction of HSP70 in cultured rat neonatal cardiomyocytes by hypoxia and metabolic stress.  Circulation. 1993;  87 2023-2032
  • 6 Kilgore J L, Musch T I, Ross C R. Physical activity, muscle, and the HSP70 response.  Can J Appl Physiol. 1998;  23 245-260
  • 7 Knowlton A A, Brecher P, Apstein C S. Rapid expression of heat shock protein in the rabbit after brief cardiac ischemia.  J Clin Invest. 1991;  87 139-147
  • 8 Kregel K C, Moseley P L. Differential effects of exercise and heat stress on liver HSP70 accumulation with aging.  J Appl Physiol. 1996;  80 547-551
  • 9 Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.  Nature. 1970;  227 680-685
  • 10 Lewis M J, Pelham H RB. Involvement of ATP in the nuclear and nucleolar functions of the 70 kd heat shock protein.  EMBO. 1985;  4 3137-3143
  • 11 Lindquist S. The heat shock response.  Ann Rev Biochem. 1986;  55 1151-1191
  • 12 Liu Y, Mayr S, Opitz-Gress A, Zeller C, Lormes W, Baur S, Lehmann M, Steinacker J M. Human skeletal muscle HSP70 response to training in highly trained rowers.  J Appl Physiol. 1999;  86 101-104
  • 13 Locke M, Atkinson B G, Tanguay R M, Noble E G. Shifts in type I fiber proportion in rat hindlimb muscle are accompanied by changes in HSP72 content.  Am J Physiol. 1994;  266 C1240-C1246
  • 14 Locke M, Noble E G. Stress proteins: the exercise response.  Can J Appl Physiol. 1995;  20 155-167
  • 15 Locke M, Noble E G, Atkinson B G. Inducible isoform of HSP70 is constitutively expressed in a muscle fiber type specific pattern.  Am J Physiol. 1991;  261 C774-C779
  • 16 Lowry O H, Rosebrough N J, Farr A L, Randall R J. Protein measurement with the folin phenol reagent.  J Biol Chem. 1951;  193 265-275
  • 17 Moseley P L. Heat shock proteins and heat adaptation of the whole organism.  J Appl Physiol. 1997;  83 1413-1417
  • 18 Oakley B R, Kirsch D K, Morris N B. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels.  Anal Biochem. 1980;  105 361-363
  • 19 Puntschart A, Vogt M, Widmer H R, Hoppeler H, Billeter R. HSP70 expression in human skeletal muscle after exercise.  Acta Physiol Scand. 1996;  157 411-417
  • 20 Ryan A J, Cisolfi C V, Moseley P L. Synthesis of 70 k stress protein by human leukocytes - Effect of exercise in the heat.  J Appl Physiol. 1991;  70 466-471
  • 21 Salo D C, Donovan C M, Davies K J. HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise.  Free Radic Biol Med. 1991;  11 239-246
  • 22 Skidmore R, Gutierrez J A, Guerriero Jr. V, Kregel K C. HSP70 induction during exercise and heat stress in rats: role of internal temperature.  Am J Physiol. 1995;  268 R92-R97
  • 23 Wheeler J C, Bieschke E T, Tower J. Muscle-specific expression in Drosophila HSP70 in response to aging and oxidative stress.  Proc Natl Acad Sci USA. 1995;  92 11408-11412
  • 24 Whelan S A, Hightower L E. Differential induction of glucose-regulated and heat shock proteins: effects of pH and sulfhydryl-reducing agents on chicken embryo cells.  J Cell Physiol. 1985;  125 251-258

Yuefei Liu

Abteilung Sport- und Rehabilitationsmedizin Universität Ulm

Steinhövelstraße 9 89070 Ulm Germany

Phone: Phone:+ 49 (731) 50-26966

Fax: Fax:+ 49 (731) 50-26686

Email: E-mail:yuefei.liu@medizin.uni-ulm.de

    >