Semin Liver Dis 2000; 20(2): 127-142
DOI: 10.1055/s-2000-9946
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Interaction between the Hepatitis C Virus and the Immune System

Barbara Rehermann
  • Liver Diseases Section, NIDDK, National Institutes of Health, Bethesda, Maryland
Further Information

Publication History

Publication Date:
31 December 2000 (online)

ABSTRACT

The hepatitis C virus (HCV) causes a wide spectrum of liver diseases ranging from symptomatic or asymptomatic acute infection with self-limited disease to persistent infection with chronic active hepatitis and an increased risk of liver cirrhosis and hepatocellular carcinoma. The outcome of HCV infection (i.e., viral clearance or persistence) and the manifestation and degree of liver disease is the result of complicated interactions between the virus and the immune response of the host. Remarkably, most de novo HCV infections are clinically inapparent and characterized by a high incidence (70%) of chronically evolving hepatitis, which suggests that HCV may have evolved strategies to not induce, overcome, or evade efficient immune responses of the host. This may be a multifactorial process, influenced by viral tissue tropism, replication, sequence variation and by functional alteration of infected cells. The interaction between HCV and the specific humoral and cellular immune response of the host, the role of the liver as the primary site of viral replication, the target of the host's immune response, and potential mechanisms of viral escape are discussed.

REFERENCES

  • 1 Negro F, Pacchioni D, Shimizu Y. Detection of intrahepatic replication of hepatitis C virus RNA by in situ hybridization and comparison with histopathology.  Proc Natl Acad Sci USA . 1992;  89 2247-2251
  • 2 Honda M, Brown E A, Lemon S M. Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA.  RNA . 1996;  2 955-968
  • 3 Ballardini G, Groff P, Pontisso P. Hepatitis C virus (HCV) genotype, tissue HCV antigens, hepatocellular expression of HLA-A,B,C, and intercellular adhesion-1 molecules. Clues to pathogenesis of hepatocellular damage and response to interferon treatment in patients with chronic hepatitis C.  J Clin Invest . 1995;  95 2067-2075
  • 4 Laskus T, Radkowski M, Wang L F, Vargas H, Rakela J. Search for hepatitis C virus extrahepatic replication sites in patients with acquired immunodeficiency syndrome: Specific detection of negative-strand viral RNA in various tissues.  Hepatology . 1998;  28 1398-1401
  • 5 Negro F, Levrero M. Does the hepatitis C virus replicate in cells of the hematopoietic lineage?.  Hepatology . 1998;  28 261-264
  • 6 Lanford R E, Chavez D, Chisari F V, Sureau C. Lack of detection of negative-strand hepatitis C virus RNA in peripheral blood mononuclear cells and other extrahepatic tissues by the highly strand-specific rTth reverse transcriptase PCR.  J Virol . 1995;  69 8079-8083
  • 7 Okuda M, Hino K, Korenaga M, Yamaguchi Y, Katoh Y, Okita K. Differences in hypervariable region 1 quasispecies of hepatitis C virus in human serum, peripheral blood mononuclear cells, and liver.  Hepatology . 1999;  29 217-222
  • 8 Agnello V. The etiology and pathophysiology of mixed cryoglobulinemia secondary to hepatitis C virus infection.  Springer Semin Immunopathol . 1997;  19 111-129
  • 9 Agnello V, Abel G, Elfahal M, Knight G B, Zhang Q X. Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor.  Proc Natl Acad Sci USA . 1999;  96 12766-12771
  • 10 Levy S, Todd S C, Maecker H T. CD81 (TAPA-1): A molecule involved in signal transduction and cell adhesion in the immune system.  Annu Rev Immunol . 1998;  16 89-109
  • 11 Pileri P, Uematsu Y, Campagnoli, S. Binding of hepatitis C virus to CD81.  Science . 1998;  282 938-941
  • 12 Lemon S, Honda M. Internal ribosome entry sites within the RNA genomes of hepatitis C virus and other flaviviruses.  Semin Virol . 1997;  8 274-288
  • 13 Bukh J, Miller R H, Purcell R H. Genetic heterogeneity of hepatitis C virus: Quasispecies and genotypes.  Semin Liver Dis . 1995;  15 41-63
  • 14 Simmonds P. Variability of hepatitis C virus.  Hepatology . 1995;  21 570-583
  • 15 Neumann A U, Lam N P, Dahari H. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy.  Science . 1998;  282 103-107
  • 16 Ochsenbein A F, Fehr T, Lutz C. Control of early viral and bacterial distribution and disease by natural antibodies.  Science . 1999;  286 2156-2159
  • 17 Chien D Y, Choo Q L, Tabrizi A. Diagnosis of hepatitis C virus (HCV) infection using an immunodominant chimeric polyprotein to capture antibodies: Reevaluation of the role of HCV in liver disease.  Proc Natl Acad Sci USA . 1992;  89 10011-10015
  • 18 Alberti A, Cavalletto D, Pontisso P, Chemello L, Tagariello G, Belussi F. Antibody response to pre-S2 and hepatitis B virus induced liver damage.  Lancet . 1988;  1 1421-1424
  • 19 Battegay M, Moskophidis D, Waldner H. Impairment and delay of neutralizing antiviral antibody responses by virus-specific cytotoxic T cells.  J Immunol . 1993;  151 5408-5415
  • 20 Koup R A, Ho D D. Shutting down HIV.  Nature . 1994;  370 416
  • 21 Modlin J. Poliovirus. In: Mandell GL, Dolin R, eds. Principles and Practice of Infectious Diseases Vol. 2. Philadelphia: Churchill Livingstone 2000: 1895-1903
  • 22 Arichi T, Major M, Wedemeyer H. A vigorous HCV-helicase specific T helper response dominates in the liver of a chimpanzee during acute, self-limited hepatitis C.  Hepatology . 1999;  30 453A
  • 23 Simmonds P, Rose K A, Graham S. Mapping of serotype-specific, immunodominant epitopes in the NS-4 region of hepatitis C virus (HCV): Use of type-specific peptides to serologically differentiate infections with HCV types 1, 2, and 3.  J Clin Microbiol. 1993;  31 1493-1503
  • 24 Farci P, Shimoda A, Wong D. Prevention of hepatitis C virus infection in chimpanzees by hyperimmune serum against the hypervariable region 1 of the envelope 2 protein.  Proc Natl Acad Sci USA . 1996;  93 15394-15399
  • 25 Shimizu Y K, Igarashi H, Kiyohara T. A hyperimmune serum against a synthetic peptide corresponding to the hypervariable region 1 of hepatitis C virus can prevent viral infection in cell cultures.  Virology . 1996;  223 409-412
  • 26 Kato N, Ootsuyama Y, Ohkohsi S. Characterization of hypervariable regions in the putative envelope protein of hepatitis C virus.  Biochem Biophys Res Commun . 1992;  189 119-127
  • 27 Hijikata M, Kato N, Ootsuyama Y, Nakagawa M, Ohkoshi S, Shimotohno K. Hypervariable regions in the putative glycoprotein of hepatitis C virus.  Biochem Biophys Res Commun . 1991;  175 220-228
  • 28 Sekiya H, Kato N, Ootsuyama Y, Nakazawa T, Yamauchi K, Shimotohno K. Genetic alterations of the putative envelope proteins encoding region of the hepatitis C virus in the progression to relapsed phase from acute hepatitis: Humoral immune response to hypervariable region 1.  Int J Cancer . 1994;  57 664-670
  • 29 Weiner A J, Brauer M J, Rosenblatt J. Variable and hypervariable domains are found in the regions of HCV corresponding to the flavivirus envelope and NS1 proteins and the pestivirus envelope glycoproteins.  Virology . 1991;  180 842-848
  • 30 Weiner A J, Geysen H M, Christopherson C. Evidence for immune selection of hepatitis C virus (HCV) putative envelope glycoprotein variants: Potential role in chronic HCV infections.  Proc Natl Acad Sci USA . 1992;  89 3468-3472
  • 31 Akatsuka T, Donets M, Scaglione L. B cell epitopes on the hepatitis C virus nucleocapsid protein determined by human monospecific antibodies.  Hepatology . 1993;  18 503-510
  • 32 Choo Q L, Kuo G, Ralston R. Vaccination of chimpanzees against infection by the hepatitis C virus.  Proc Natl Acad Sci USA . 1994;  91 1294-1298
  • 33 Rosa D, Campagnoli S, Moretto C. A quantitative test to estimate neutralizing antibodies to the hepatitis C virus: Cytofluorimetric assessment of envelope glycoprotein 2 binding to target cells.  Proc Natl Acad Sci USA . 1996;  93 1759-1763
  • 34 Ishii K, Rosa D, Watanabe Y. High titers of antibodies inhibiting the binding of envelope to human cells correlate with natural resolution of chronic hepatitis C.  Hepatology . 1998;  28 1117-1120
  • 35 Allander T, Beyene A, Jacobson S H, Grillner L, Persson M A. Patients infected with the same hepatitis C virus strain display different kinetics of the isolate-specific antibody response.  J Infect Dis . 1997;  175 26-31
  • 36 Zibert A, Kraas W, Meisel H, Jung G, Roggendorf M. Epitope mapping of antibodies directed against hypervariable region 1 in acute self-limiting and chronic infections due to hepatitis C virus.  J Virol . 1997;  71 4123-4127
  • 37 Zibert A, Meisel H, Kraas W, Schulz A, Jung G, Roggendorf M. Early antibody response against hypervariable region 1 is associated with acute self-limiting infections of hepatitis C virus.  Hepatology . 1997;  25 1245-1249
  • 38 Ray S C, Wang Y M, Laeyendecker O, Ticehurst J R, Villano S A, Thomas D L. Acute hepatitis C virus structural gene sequences as predictors of persistent viremia: Hypervariable region 1 as a decoy.  J Virol . 1999;  73 2938-2946
  • 39 Bassett S E, Thomas D L, Brasky K M, Lanford R E. Viral persistence, antibody to E1 and E2, and hypervariable region 1 sequence stability in hepatitis C virus-inoculated chimpanzees.  J Virol . 1999;  73 1118-1126
  • 40 Major M E, Mihalik K, Fernandez J. Long-term follow-up of chimpanzees inoculated with the first infectious clone for hepatitis C virus.  J Virol . 1999;  73 3317-3325
  • 41 Cantor H M, Dumont A E. Hepatic suppression of sensitization to antigen absorbed into the portal system.  Nature . 1967;  215 744-745
  • 42 Wang C, Sun J, Wang L, Li L, Horvat M, Sheil R. Combined liver and pancreas transplantation induces pancreas allograft tolerance.  Transplant Proc . 1997;  29 1145-1146
  • 43 Collins C, Norris S, McEntee G. RAG1, RAG2 and pre-T cell receptor alpha chain expression by adult human hepatic T cells: Evidence for extrathymic T cell maturation.  Eur J Immunol . 1996;  26 3114-3118
  • 44 Lynch S, Kelleher D, McManus R, O'Farrelly C. RAG1 and RAG2 expression in human intestinal epithelium: Evidence of extrathymic T cell differentiation.  Eur J Immunol . 1995;  25 1143-1147
  • 45 Guy-Grand D, Vanden Broecke C, Briottet C, Malassis-Seris M, Selz F, Vassalli P. Different expression of the recombination activity gene RAG-1 in various populations of thymocytes, peripheral T cells and gut thymus-independent intraepithelial lymphocytes suggests two pathways of T cell receptor rearrangement.  Eur J Immunol . 1992;  22 505-510
  • 46 Lundqvist C, Baranov V, Hammarstrom S, Athlin L, Hammarstrom M L. Intra-epithelial lymphocytes. Evidence for regional specialization and extrathymic T cell maturation in the human gut epithelium.  Int Immunol . 1995;  7 1473-1487
  • 47 O'Farrelly C, Crispe I N. Prometheus through the looking glass: Reflections on the hepatic immune system.  Immunol Today . 1999;  20 394-398
  • 48 Schlitt H J, Schafers S, Deiwick A. Extramedullary erythropoiesis in human liver grafts.  Hepatology . 1995;  21 689-696
  • 49 Huang L, Sye K, Crispe I N. Proliferation and apoptosis of B220+CD4-CD8-TCR alpha beta intermediate T cells in the liver of normal adult mice: Implication for lpr pathogenesis.  Int Immunol . 1994;  6 533-540
  • 50 Huang L, Soldevila G, Leeker M, Flavell R, Crispe I N. The liver eliminates T cells undergoing antigen-triggered apoptosis in vivo.  Immunity . 1994;  1 741-749
  • 51 Masuda T, Ohteki T, Abo T. Expansion of the population of double negative CD4-8- T alpha beta- cells in the liver is a common feature of autoimmune mice.  J Immunol . 1991;  147 2907-2912
  • 52 Bandeira A, Itohara S, Bonneville M. Extrathymic origin of intestinal intraepithelial lymphocytes bearing T-cell antigen receptor gamma delta.  Proc Natl Acad Sci USA . 1991;  88 43-47
  • 53 MacDonald H R. NK1.1+ T cell receptor-alpha/beta+ cells: New clues to their origin, specificity, and function.  J Exp Med . 1995;  182 633-638
  • 54 Bendelac A, Lantz O, Quimby M E, Yewdell J W, Bennink J R, Brutkiewicz R R. CD1 recognition by mouse NK1+ T lymphocytes.  Science . 1995;  268 863-865
  • 55 Biron C A. Role of early cytokines, including alpha and beta interferons (IFN- alpha/beta), in innate and adaptive immune responses to viral infections.  Semin Immunol . 1998;  10 383-390
  • 56 Ishikawa R, Biron C A. IFN induction and associated changes in splenic leukocyte distribution.  J Immunol . 1993;  150 3713-3727
  • 57 Vilcek J SG. Interferons and other cytokines. In: Fields BN, Howley PM, eds. Fundamental Virology Vol. 11. Philadelphia: Lippincott-Raven 1996: 341-365
  • 58 Salazar-Mather T P, Ishikawa R, Biron C A. NK cell trafficking and cytokine expression in splenic compartments after IFN induction and viral infection.  J Immunol . 1996;  157 3054-3064
  • 59 MacMicking J, Xie Q W, Nathan C. Nitric oxide and macrophage function.  Annu Rev Immunol . 1997;  15 323-350
  • 60 Salazar-Mather T P, Orange J S, Biron C A. Early murine cytomegalovirus (MCMV) infection induces liver natural killer (NK) cell inflammation and protection through macrophage inflammatory protein 1alpha (MIP-1alpha)-dependent pathways.  J Exp Med . 1998;  187 1-14
  • 61 Pilaro A M, Taub D D, McCormick K L. TNF-alpha is a principal cytokine involved in the recruitment of NK cells to liver parenchyma.  J Immunol . 1994;  153 333-342
  • 62 Orange J S, Salazar-Mather T P, Opal S M, Biron C A. Mechanisms for virus-induced liver disease: Tumor necrosis factor-mediated pathology independent of natural killer and T cells during murine cytomegalovirus infection.  J Virol . 1997;  71 9248-9258
  • 63 Lanier L L. NK cell receptors.  Annu Rev Immunol . 1998;  16 359-393
  • 64 Ballardini G, Groff P, Pontisso P. Hepatitis C virus (HCV) genotype, tissue HCV antigens, hepatocellular expression of HLA-A, B, C, and intercellular adhesion-1 molecules.  J Clin Invest . 1995;  95 2967-2975
  • 65 Barbatis C, Morton J A, Fleming K A, McMichael A, McGee J O. Immunohistochemical analysis of HLA (A,B,C) antigens in liver disease using a monoclonal antibody.  Gut . 1981;  22 985-991
  • 66 Albert M L, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I- restricted CTLs.  Nature . 1998;  392 86-89
  • 67 Sigal L J, Crotty S, Andino R, Rock K L. Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen.  Nature . 1999;  398 77-80
  • 68 Kim J, Woods A, Becker-Dunn E, Bottomly K. Distinct functional phenotypes of cloned Ia-restricted helper T cells.  J Exp Med . 1985;  162 188-201
  • 69 Mosmann T R, Cherwinski H, Bond M W, Giedlin M A, Coffman R L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins.  J Immunol . 1986;  136 2348-2357
  • 70 Ridge J P, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a cD4+ T-helper and a T-killer cell.  Nature . 1998;  393 474-478
  • 71 Guidotti L G, Rochford R, Chung J, Shapiro M, Purcell R, Chisari F V. Viral clearance without destruction of infected cells during acute HBV infection.  Science . 1999;  284 825-829
  • 72 Pavic I, Polic B, Crnkovic I, Lucin P, Jonjic S, Koszinowski U H. Participation of endogenous tumour necrosis factor alpha in host resistance to cytomegalovirus infection.  J Gen Virol . 1993;  74 2215-2223
  • 73 Franco M A, Tin C, Rott L S, Van Cotte L J, McGhee J R, Greenberg H B. Evidence for CD8+ T-cell immunity to murine rotavirus in the absence of perforin, fas and gamma interferon.  J Virol . 1997;  71 479-486
  • 74 Franco A, Guidotti L G, Hobbs M V, Pasquetto V, Chisari F V. Pathogenetic effector function of CD4-positive T helper 1 cells in hepatitis B virus transgenic mice.  J Immunol . 1997;  159 2001-2008
  • 75 Ferrari C, Valli A, Galati L. T-cell response to structural and nonstructural hepatitis C virus antigens in persistent and self-limited hepatitis C virus infections.  Hepatology . 1994;  19 286-295
  • 76 Diepolder H M, Zachoval R, Hoffmann R M. Possible mechanism involving T lymphocyte response to non-structural protein 3 in viral clearance in acute hepatitis C virus infection.  Lancet . 1995;  346 1006-1007
  • 77 Diepolder H M, Gerlach J-T, Zachoval R. Immunodominant CD4+ T-cell epitope within nonstructural protein 3 in acute hepatitis C virus infection.  J Virol . 1997;  71 6011-6019
  • 78 Missale G, Bertoni R, Lamonaca V. Different clinical behaviors of acute hepatitis C virus infection are associated with different vigor of the anti-viral cell-mediated immune response.  J Clin Invest . 1996;  98 706-714
  • 79 Lamonaca V, Missale G, Urbani S. Conserved hepatitis C virus sequences are highly immunogenic for CD4(+) T cells: Implications for vaccine development.  Hepatology . 1999;  30 1088-1098
  • 80 Gerlach J T, Diepolder H M, Jung M C. Recurrence of hepatitis C virus after loss of virus-specific CD4(+) T-cell response in acute hepatitis C.  Gastroenterology . 1999;  117 933-941
  • 81 Chang K M, Gruener N H, Southwood S. Identification of HLA-A3 and -B7-restricted CTL response to hepatitis C virus in patients with acute and chronic hepatitis C.  J Immunol . 1999;  162 1156-1164
  • 82 Cooper S, Erickson A L, Adams E J. Analysis of a successful immune response against hepatitis C virus.  Immunity . 1999;  10 439-449
  • 83 Pantaleo G, Demarest J F, Schacker T. The qualitative nature of the primary immune response to HIV infection is a prognosticator of disease progression independent of the initial level of plasma viremia.  Proc Natl Acad Sci USA . 1997;  94 254-258
  • 84 von Boehmer H. The developmental biology of T lymphocytes.  Annu Rev Immunol . 1988;  6 309-326
  • 85 Rehermann B, Chisari F V. Cell mediated immune response to the hepatitis C virus.  Curr Top Microbiol Immunol . 2000;  242 299-325
  • 86 Battegay M, Fikes J, Di Bisceglie M A. Patients with chronic hepatitis C have circulating cytotoxic T cells which recognize hepatitis C virus-encoded peptides binding to HLA-A2.1 molecules.  J Virol . 1995;  69 2462-2470
  • 87 Cerny A, McHutchison J G, Pasquinelli C. Cytotoxic T lymphocyte response to hepatitis C virus-derived peptides containing the HLA A2.1 binding motif.  J Clin Invest . 1995;  95 521-530
  • 88 Koziel M J, Dudley D, Afdhal N. HLA class I-restricted cytotoxic T lymphocytes specific for hepatitis C virus. Identification of multiple epitopes and characterization of patterns of cytokine release.  J Clin Invest . 1995;  96 2311-1221
  • 89 Koziel M J, Dudley D, Wong J T. Intrahepatic cytotoxic T lymphocytes specific for hepatitis C virus in persons with chronic hepatitis.  J Immunol . 1992;  149 3339-3344
  • 90 Koziel J M, Dudley D, Afdhal N. Hepatitis C virus (HCV)-specific cytotoxic T lymphocytes recognize epitopes in the core and envelope proteins of HCV.  J Virol . 1993;  67 7522-7532
  • 91 Erickson A L, Houghton M, Choo Q-L. Hepatitis C virus-specific CTL responses in the liver of chimpanzees with acute and chronic hepatitis C.  J Immunol . 1993;  151 4189-4199
  • 92 Del Guercio F M, Sidney J, Hermanson G. Binding of a peptide antigen to multiple HLA alleles allows definition of an A2-like supertype.  J Immunol . 1995;  154 685-693
  • 93 Sidney J, Del Guercio F M, Southwood S. Several HLA alleles share overlapping peptide specificities.  J Immunol . 1995;  154 247-259
  • 94 Sidney J, Grey H M, Kubo R T, Sette A. Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs.  Immunol Today . 1996;  17 261-266
  • 95 Sidney J, Grey H M, Southwood S. Definition of an HLA-A3-like supermotif demonstrates the overlapping peptide-binding repertoires of common HLA molecules.  Hum Immunol . 1996;  45 79-93
  • 96 Scognamiglio P, Accapezzato D, Casciani A. Presence of effector CD8+ T cells in hepatitis C virus-exposed healthy seronegative donors.  J Immunol . 1999;  162 6681-6689
  • 97 Rehermann B, Chang K M, McHutchison J G, Kokka R, Houghton M, Chisari F V. Quantitative analysis of the peripheral blood cytotoxic T lymphocyte response, disease activity and viral load in patients with chronic hepatitis C virus infection.  J Clin Invest . 1996;  98 1432-1440
  • 98 He X S, Rehermann B, Lopez-Labrador F X. Quantitative analysis of hepatitis C virus-specific CD8(+) T cells in peripheral blood and liver using peptide-MHC tetramers.  Proc Natl Acad Sci USA . 1999;  96 5692-5697
  • 99 Murali-Krishna K, Altman J D, Suresh M. Counting antigen-specific CD8 T cells: A reevaluation of bystander activation during viral infection.  Immunity . 1998;  8 177-187
  • 100 Hiroishi K, Kita H, Kojima M. Cytotoxic T lymphocyte response and viral load in hepatitis C virus infection.  Hepatology . 1997;  25 705-712
  • 101 Rehermann B, Chang K M, McHutchison J. Differential cytotoxic T lymphocyte responsiveness to the hepatitis B and C viruses in chronically infected patients.  J Virol . 1996;  70 7092-7102
  • 102 Nelson D R, Marousis C G, Davis G L. The role of hepatitis C virus-specific cytotoxic T lymphocytes in chronic hepatitis C.  J Immunol . 1997;  158 1473-1481
  • 103 Nakamoto Y, Guidotti L G, Kuhlen C V, Fowler P, Chisari F V. Immune pathogenesis of hepatocellular carcinoma.  J Exp Med . 1998;  188 341-350
  • 104 Shields P L, Morland C M, Salmon M, Qin S, Hubscher S G, Adams D H. Chemokine and chemokine receptor interactions provide a mechanism for selective T cell recruitment to specific liver compartments within hepatitis C-infected liver.  J Immunol . 1999;  163 6236-6243
  • 105 Sallusto F, Lenig D, Mackay C R, Lanzavecchia A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes.  J Exp Med . 1998;  187 875-883
  • 106 Bonechhi R, Bianchi G, Bordignon P P. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s.  J Exp Med . 1998;  187 129-134
  • 107 Mukaida N, Hishinuma A, Zachariae C O, Oppenheim J J, Matsushima K. Regulation of human interleukin 8 gene expression and binding of several other members of the intercrine family to receptors for interleukin-8.  Adv Exp Med Biol . 1991;  305 31-38
  • 108 Goebeler M, Yoshimura T, Toksoy A, Ritter U, Brocker E B, Gillitzer R. The chemokine repertoire of human dermal microvascular endothelial cells and its regulation by inflammatory cytokines.  J Invest Dermatol . 1997;  108 445-451
  • 109 Luster A D, Unkeless J C, Ravetch J V. Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins.  Nature . 1985;  315 672-676
  • 110 Cocchi F, DeVico A L, Garzino-Demo A, Arya S K, Gallo R C, Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells.  Science . 1995;  270 1811-1815
  • 111 Wagner L, Yang O O, Garcia-Zepeda E A. Beta-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans.  Nature . 1998;  391 908-911
  • 112 Murai M, Yoneyama H, Harada A. Active participation of CCR5(+)CD8(+) T lymphocytes in the pathogenesis of liver injury in graft-versus-host disease.  J Clin Invest . 1999;  104 49-57
  • 113 Mehal W Z, Juedes A E, Crispe I N. Selective retention of activated CD8+ T cells by the normal liver.  J Immunol . 1999;  163 3202-3210
  • 114 MacPhee P J, Schmidt E E, Groom A C. Intermittence of blood flow in liver sinusoids, studied by high-resolution in vivo microscopy.  Am J Physiol . 1995;  269 G692-G698
  • 115 Flynn K J, Belz G T, Altman J D, Ahmed R, Woodland D L, Doherty P C. Virus-specific CD8+ T cells in primary and secondary influenza pneumonia.  Immunity . 1998;  8 683-691
  • 116 Nuti S, Rosa D, Valiante N M, Saletti G, Caratozzolo M, Dellabona P, Barnaba V, Abrignani S. Dynamics of intrahepatic lymphocytes in chronic hepatitis C: enrichment for Valpha24+ T cells and rapid elimination of effector cells by apoptosis.  Eur J Immunol . 1998;  28 3448-3455
  • 117 Wejstal R, Norkrans R, Weiland O. Lymphocyte subsets and B2 microglobulin expression in chronic hepatitis C/nonA-nonB: Effect of interferon-alpha treatment.  Clin Exp Immunol . 1992;  87 340-345
  • 118 Yuk K, Shimizu M, Aoyama S. Analysis of lymphocyte subsets in liver biopsy specimens with lymphoid follicle like structures.  Acta Hepatol Jpn . 1986;  27 720-725
  • 119 Gonzalez-Peralta R P, Fang J WS, Davis G L. Immunopathobiology of chronic hepatitis C virus infection.  Hepatology . 1994;  20 232A
  • 120 Onji M, Kikuchi T, Kumon I. Intrahepatic lymphocyte subpopulations and HLA class I antigen expression by hepatocytes in chronic hepatitis C.  Hepatogastroenterology . 1992;  39 340-343
  • 121 Minutello M A, Pileri P, Unutmaz D. Compartmentalization of T-lymphocyte to the site of disease: Intrahepatic CD4+ T-cells specific for the protein NS4 of hepatitis C virus in patients with chronic hepatitis.  J Exp Med . 1993;  178 17-26
  • 122 Kashii Y, Shimizu Y, Nambu S. Analysis of T-cell receptor V beta repertoire in liver-infiltrating lymphocytes in chronic hepatitis C.  J Hepatol . 1997;  26 462-470
  • 123 Marrogi A J, Cheles M K, Gerber M A. Chronic hepatitis C.  Analysis of host immune response by immunohistochemistry. Arch Pathol Lab Med . 1995;  119 232-237
  • 124 Mosnier J F, Scoaze J Y, Marcellin P, Degott C, Benahmou J P, Feldmann G. Expression of cytokine-dependent immune adhesion molecules by hepatocytes.  Gastroenterology . 1994;  107 1457-1468
  • 125 Hiramatsu N, Hayashi N, Katayama K. Immunohistochemical detection of Fas antigen in liver tissue of patients with chronic hepatitis C.  Hepatology . 1994;  19 1354-1359
  • 126 Mita E, Hayashi N, Iio S. Role of Fas ligand in apoptosis induced by hepatitis C virus infection.  Biochem Biophys Res Commun . 1994;  204 468-474
  • 127 Lohman B L, Razvi E S, Welsh R M. T-lymphocyte downregulation after acute viral infection is not dependent on CD95 (Fas) receptor-ligand interactions.  J Virol . 1996;  70 8199-8203
  • 128 Vassalli P. The pathophysiology of tumor necrosis factors.  Annu Rev Immunol . 1992;  10 411-452
  • 129 Kinkhabwala M, Sehajpal P, Skolnik E. A novel addition to the T cell repertory: Cell surface expression of tumor necrosis factor/cachectin by activated normal human T cells.  J Exp Med . 1990;  171 941-946
  • 130 Ando K, Hiroishi K, Kaneko T. Perforin, fas/fas ligand, and TNF-alpha pathways as specific and bystander killing mechanisms of hepatitis C virus-specific human CTL.  J Immunol . 1997;  158 5283-5291
  • 131 Zhang Z, Brunner T, Carter L. Unequal death in T helper cell (Th)1 and Th2 effectors: Th1, but not Th2, effectors undergo rapid Fas/FasL-mediated apoptosis.  J Exp Med . 1997;  185 1837-1849
  • 132 Nuti S, Rosa D, Valiante N M. Dynamics of intra-hepatic lymphocytes in chronic hepatitis C: Enrichment for V alpha24+ T cells and rapid elimination of effector cells by apoptosis.  Eur J Immunol . 1998;  28 3448-3455
  • 133 Hollinger F B, Gitnick G L, Aach R D. Non-A, and non-B hepatitis transmission in chimpanzees: A project of the transfusion-transmitted viruses study group.  Intervirology . 1978;  10 60-68
  • 134 He L F, Alling D, Popkin T, Shapiro M, Alter H J, Purcell R H. Determining the size of non-A, non-B hepatitis virus by filtration.  J Infect Dis . 1987;  156 636-640
  • 135 Kolykhalov A, Agapov E, Blight K, Mihalik K, Feinstone S, Rice C. Transmission of hepatitis C by intrahepatic inocculation with transcribed RNA.  Science . 1997;  277 570-574
  • 136 Yanagi M, Purcell R H, Emerson S U, Bukh J. Hepatitis C virus: An infectious molecular clone of a second major genotype (2a) and lack of viability of intertypic 1a and 2a chimeras.  Virology . 1999;  262 250-263
  • 137 Yanagi M, Purcell R H, Emerson S U, Bukh J. Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee.  Proc Natl Acad Sci USA . 1997;  94 8738-8743
  • 138 Beard M R, Abell G, Honda M. An infectious molecular clone of a Japanese genotype 1b hepatitis C virus.  Hepatology . 1999;  30 316-324
  • 139 Alter H J, Purcell R H, Holland P V, Popper H. Transmissible agent in non-A, non-B hepatitis.  Lancet . 1978;  1 459-463
  • 140 Popper H, Dienstag J L, Feinstone S M, Alter H J, Purcell R. The pathology of viral hepatitis lin chimpanzees.  Arch A Pathol Anat Histol . 1980;  387 91-106
  • 141 Bassett S E, Brasky K M, Lanford R E. Analysis of hepatitis C virus-inoculated chimpanzees reveals unexpected clinical profiles.  J Virol . 1998;  72 2589-2599
  • 142 Walker C M. Comparative features of hepatitis C virus infection in humans and chimpanzees.  Springer Semin Immunopathol . 1997;  19 85-98
  • 143 Kenney-Walsh E. Clinical outcomes after hepatitis C infection from contaminated anti-D immune globulin. Irish Hepatology Research Group.  N Engl J Med . 1999;  340 1228-1233
  • 144 Takaki A, Wiese M, Maertens G, Depla E, Seifert U, Liebetrau A, Miller J, Manns M P, Rehermann B. Cellular immune responses persist and humoral responses decrease two decades after recovery from a single-source outbreak of hepatitis C.  Nature Medicine . 2000;  6 578-582
  • 145 Wiese M. Thema: Virushepatitis.  Der Kassenarzt . 1996;  5 36-38
  • 146 Shirai M, Arichi T, Nishioka M. CTL responses of HLA-A2.1-transgenic mice specific for hepatitis C viral peptides predict epitopes for CTL of humans carrying HLA-A2.1  J Immunol . 1995;  154 2733-2742
  • 147 Wentworth P A, Sette A, Celis E. Identification of A2-restricted hepatitis C virus-specific cytotoxic T lymphocyte epitopes from conserved regions of the viral genome.  Int Immunol . 1996;  8 651-659
  • 148 Oseroff C, Sette A, Wentworth P. Pools of lipidated HTL-CTL constructs prime for multiple HBV and HCV CTL epitope responses.  Vaccine . 1998;  16 823-833
  • 149 Arichi T, Saito T, Major M E. Prophylactic DNA vaccine for hepatitis C virus (HCV) infection: HCV-specific cytotoxic T lymphocyte induction and protection from HCV-recombinant vaccinia infection in an HLA-A2.1 transgenic mouse model.  Proc Natl Acad Sci USA . 2000;  97 297-302
  • 150 Kawamura T, Furusaka A, Koziel M J. Transgenic expression of hepatitis C virus structural proteins in the mouse.  Hepatology . 1997;  25 1014-1021
  • 151 Pasquinelli C, Shoenberger J M, Chung J. Hepatitis C virus core and E2 protein expression in transgenic mice.  Hepatology . 1997;  25 719-727
  • 152 Moriya K, Yotsuyanagi H, Shintani Y. Hepatitis C virus core protein induces hepatic steatosis in transgenic mice.  J Gen Virol . 1997;  78 1527-1531
  • 153 Moriya K, Fujie H, Shintani Y. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice.  Nat Med . 1998;  4 1065-1067
  • 154 Koike K, Moriya K, Ishibashi K. Expression of hepatitis C virus envelope proteins in transgenic mice.  J Gen Viol . 1995;  76 3031-3038
  • 155 Bronowicki J P, Loriot M A, Thiers V, Grignon Y, Zignego A L, Brechot C. Hepatitis C virus persistence in human hematopoietic cells injected into SCID mice.  Hepatology . 1998;  28 211-218
  • 156 Galun E, Burakova T, Ketzinel M. Hepatitis C virus viremia in SCID → BNX mouse chimera.  J Infect Dis . 1995;  172 25-30
  • 157 Kanto T, Hayashi N, Takehara T. Impaired allostimulatory capacity of peripheral blood dendritic cells recovered from hepatitis C virus-infected individuals.  J Immunol . 1999;  162 5584-5591
  • 158 Cai Z, Sprent J. Influence of antigen dose and costimulation on the primary response of CD8+ T cells in vitro.  J Exp Med . 1996;  183 2247-2257
  • 159 Heim M H, Moradpour D, Blum H E. Expression of hepatitis C virus proteins inhibits signal transduction through the Jak-STAT pathway.  J Virol . 1999;  73 8469-8475
  • 160 Large M K, Kittlesen D J, Hahn Y S. Suppression of host immune response by the core protein of hepatitis C virus: Possible implications for hepatic C virus persistence.  J Immunol . 1999;  162 931-938
  • 161 Matsumoto M, Hsieh T Y, Zhu N. Hepatitis C virus core protein interacts with the cytoplasmic tail of lymphotoxin-beta receptor.  J Virol . 1997;  71 1301-1309
  • 162 Chen C M, You L R, Hwang L H, Lee Y H. Direct interaction of hepatitis C virus core protein with the cellular lymphocotoxin-beta receptor modulates the signal pathway of the lymphotoxin-beta receptor.  J Virol . 1997;  71 9417-9426
  • 163 Ray R B, Meyer K, Steele R, Shrivastava A, Aggarwal B B, Ray R. Inhibition of tumor necrosis factor (TNF-alpha)-mediated apoptosis by hepatitis C virus core protein.  J Biol Chem . 1998;  273 2256-2259
  • 164 Ray R B, Lagging L M, Meyer K, Steele R, Ray R. Transcriptional regulation of cellular and viral promoters by the hepatitis C virus core protein.  Virus Res . 1995;  37 209-220
  • 165 Shih C M, Lo S J, Miyamura T, Chen S Y, Lee Y H. Suppression of hepatitis B virus expression and replication by hepatitis C virus core protein in HuH-7 cells.  J Virol . 1993;  67 5823-5832
  • 166 Ray R B, Lagging L M, Meyer K, Ray R. Hepatitis C virus core protein cooperates with ras and transforms primary rat embryo fibroblasts to tumorigenic phenotype.  J Virol . 1996;  70 4438-4444
  • 167 Guidotti L G, Ishikawa T, Hobbs M V, Matzke B, Schreiber R, Chisari F V. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes.  Immunity . 1996;  4 35-36
  • 168 Pavic I, Polic B, Crnkovic I, Lucin P, Jonjic S, Koszinowski U H. Participation of endogenous tumor necrosis factor alpha in host resistance to cytomegalovirus infection.  J Gen Virol . 1993;  74 2215-2223
  • 169 Cocchi F, deVico A L, Garzino-Demo A, Arya S K, Gallo R C, Lusso P. Identification of Rantes, MIP-1alpha and MIP-1beta as the major HIV-suppressive factors produced by CD8+ T cells.  Science . 1995;  270 1811-1815
  • 170 Heise T, Guidotti L G, Chisari F V. La autoantigen specifically recognizes a predicted stem-loop in hepatitis B virus RNA.  J Virol . 1999;  73 5767-5776
  • 171 Heise T, Guidotti L G, Cavanaugh V J, Chisari F V. Hepatitis B virus RNA-binding proteins associated with cytokine-induced clearance of viral RNA from the liver of transgenic mice.  J Virol . 1999;  73 474-481
  • 172 Taylor D R, Shi S T, Romano P R, Barber G N, Lai M M. Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein.  Science . 1999;  285 107-110
  • 173 Gale Jr M, Kwieciszewski B, Dossett M, Nakao H, Katze M G. Antiapoptotic and oncogenic potentials of hepatitis C virus are linked to interferon resistance by viral repression of the PKR protein kinase.  J Virol . 1999;  73 6506-6516
  • 174 Tan S L, Nakao H, He Y. NS5A, a nonstructural protein of hepatitis C virus, binds growth factor receptor-bound protein 2 adaptor protein in a Src homology 3 domain/ligand-dependent manner and perturbs mitogenic signaling.  Proc Natl Acad Sci USA . 1999;  96 5533-5538
  • 175 Gale Jr J M, Korth M J, Katze M G. Repression of the PKR protein kinase by the hepatitis C virus NS5A protein: A potential mechanism of interferon resistance.  Clin Diagn Virol . 1998;  10 157-162
  • 176 Gale Jr M, Blakely C M, Kwieciszewski B. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: Molecular mechanisms of kinase regulation.  Mol Cell Biol . 1998;  18 5208-5218
  • 177 Gale Jr M, Katze M G. Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase.  Pharmacol Ther . 1998;  78 29-46
  • 178 Gale Jr J M, Korth M J, Tang N M. Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein.  Virology . 1997;  230 217-227
  • 179 Chung R T, Monto A, Dienstag J L, Kaplan L M. Mutations in the NS5A region do not predict interferon-responsiveness in american patients infected with genotype 1b hepatitis C virus.  J Med Virol . 1999;  58 353-358
  • 180 Pawlotsky J M, Germanidis G, Neumann A U, Pellerin M, Frainais P O, Dhumeaux D. Interferon resistance of hepatitis C virus genotype 1b: Relationship to nonstructural 5A gene quasispecies mutations.  J Virol . 1998;  72 2795-2805
  • 181 Paterson M, Laxton C D, Thomas H C, Ackrill A M, Foster G R. Hepatitis C virus NS5A protein inhibits interferon antiviral activity, but the effects do not correlate with clinical response.  Gastroenterology . 1999;  117 1187-1197
  • 182 Ogata N, Alter H J, Miller R H, Purcell R H. Nucleotide sequence and mutation rate of the H strain of hepatitis C virus.  Proc Natl Acad Sci USA . 1991;  88 3392-3396
  • 183 Okamoto H, Kojima M, Okada S. Genetic drift of hepatitis C virus during an 8.2-year infection in a chimpanzee: Variability and stability.  Virology . 1992;  190 894-899
  • 184 Smith D B, Pathirana S, Davidson F. The origin of hepatitis C virus genotypes.  J Gen Virol . 1997;  78 321-328
  • 185 Pawlotsky J M, Pellerin M, Bouvier M. Genetic complexity of the hypervariable region 1 (HVR1) of hepatitis C virus (HCV): Influence on the characteristics of the infection and responses to interferon alfa therapy in patients with chronic hepatitis C.  J Med Virol . 1998;  54 256-264
  • 186 Toyoda H, Kumada T, Nakano S. Quasispecies nature of hepatitis C virus and response to alpha interferon: Significance as a predictor of direct response to interferon.  J Hepatol . 1997;  26 6-13
  • 187 Weiner A, Erickson A L, Kansopon J. Persistent hepatitis C virus infection in a chimpanzee is associated with emergence of a cytotoxic T lymphocyte escape variant.  Proc Natl Acad Sci USA . 1995;  92 2755-2759
  • 188 Chang K M, Rehermann B, McHutchison J G. Immunological significance of cytotoxic T lymphocyte epitope variants in patients chronically infected by the hepatitis C virus.  J Clin Invest . 1997;  100 2376-2385
  • 189 Tsai S L, Chen Y M, Chen M H. Hepatitis C virus variants circumventing cytotoxic T lymphocyte activity as a mechanism of chronicity.  Gastroenterology . 1998;  115 954-965
  • 190 Kaneko T, Moriyama T, Udaka K. Impaired induction of cytotoxic T lymphocytes by antagonism of a weak agonist borne by a variant hepatitis C virus epitope.  Eur J Immunol . 1997;  27 1782-1787
    >