Semin Thromb Hemost 2002; 28(1): 19-28
DOI: 10.1055/s-2002-20561
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

The Coagulation System as a Target for the Treatment of Human Gliomas

Deborah L. Ornstein1 , Kenneth R. Meehan2 , Leo R. Zacharski3
  • 1Director, Special Hematology and Coagulation Laboratory, Wilford Hall Medical Center, Lackland Air Force Base, San Antonio, Texas and Uniformed Services University of the Health Sciences, Bethesda, Maryland
  • 2Section Hematology/Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire and Dartmouth Medical School, Hanover, New Hampshire
  • 3Veterans Administration Medical Center, White River Junction, Vermont and Dartmouth Medical School, Hanover, New Hampshire
Further Information

Publication History

Publication Date:
05 March 2002 (online)

ABSTRACT

Coagulation activation in human gliomas may have two consequences: (1) activation of systemic coagulation reactions leading to the development of venous thromboembolic disease, and (2) stimulation of tumor growth and invasion. Anticoagulation in patients with gliomas, therefore, may not only prevent thrombosis but also have anticancer activity. Tissue factor and thrombin are appropriate targets for intervention, and several drugs are suitable for testing. Low-molecular-weight heparin and direct thrombin inhibitors are useful for reducing thrombin production and activity, and recombinant tissue factor pathway inhibitor and statins are examples of drugs that target tissue factor directly. This article reviews the implications of coagulation activation in human gliomas and provides a rationale for clinical testing of anticoagulants as part of a treatment strategy for this devastating human cancer.

REFERENCES

  • 1 Greenlee R, Hill-Harmon M, Murray T, Thun M. Cancer statistics, 2001.  CA Cancer J Clin . 2001;  51 15-36
  • 2 DeAngelis L. Brain tumors.  N Engl J Med . 2001;  344 114-123
  • 3 Marras L, Geerts W, Perry J. The risk of venous thromboembolism is increased throughout the course of malignant glioma.  Cancer . 2000;  89 640-646
  • 4 Bjorklid E, Storm-Mathisen J, Storm E, Prydz H. Localization of tissue thromboplastin in the human brain.  Thromb Haemost . 1997;  37 91-97
  • 5 Hamada K, Kuratsu J, Saitoh Y. Expression of tissue factor in glioma.  Brain Tumor Pathol . 1996;  13 115-118
  • 6 Hamada K, Kuratsu J, Saitoh Y. Expression of tissue factor correlates with grade of malignancy in human glioma.  Cancer . 1996;  77 1877-1883
  • 7 Takano S, Tsuboi K, Tomono Y, Mitsui Y, Nose T. Tissue factor, osteopontin, αvβ3 integrin expression in microvasculature of gliomas associated with vascular endothelial growth factor expression.  Br J Cancer . 2000;  82 1967-1973
  • 8 Meehan K, Memoli V, Rousseau S, Zacharski L. Presence of components of the coagulation and fibrinolysis pathways in situ in malignant glioma tissue.  Blood . 1994;  84(Suppl 1, part 1) 679a-679a Abst
  • 9 Bardos H, Molnar P, Csecsei G, Adany R. Fibrin deposition in primary and metastatic human brain tumors.  Blood Coagul Fibrinolysis . 1996;  7 536-548
  • 10 Heesen M, Kemkes-Matthes B, Deinsberger W, Boldt J, Matthes K. Coagulation alterations in patients undergoing elective craniotomy.  Surg Neurol . 1997;  47 35-38
  • 11 Fujii Y, Tanaka R, Takeuchi S. Serial changes in hemostasis after intracranial surgery.  Neurosurgery . 1994;  35 26-33
  • 12 Sawaya R, Auccarello M, Elkaliny M, Nishiyama H. Postoperative venous thromboembolism and brain tumors: part 1. Clinical profile.  J Neurooncol . 1992;  14 119-125
  • 13 Quevedo J, Buckner J, Schmidt J, Dinapoli R, O'Fallon J. Thromboembolism in patients with high-grade glioma.  Mayo Clin Proc . 1994;  69 329-332
  • 14 Brandes A, Scelzi E, Salmistraro G. Incidence and risk of thromboembolism during treatment of high-grade gliomas: a prospective study.  Eur J Cancer . 1997;  33 1592-1596
  • 15 Anderson F, Huang W, Sullivan C, Hochberg F, Hartman L. The continuing risk of venous thromboembolism following operation for glioma: findings from the glioma outcomes project.  Thromb Haemost . 2001;  Suppl OC902-OC902 Abst
  • 16 Dhami M, Bona R, Calogero J, Hellman R. Venous thromboembolism and high grade gliomas.  Thromb Haemost . 1993;  70 393-396
  • 17 Nurmohamed M, van Riel A, Henkens C. Low molecular weight heparin and compression stockings in the prevention of venous thromboembolism in neurosurgery.  Thromb Haemost . 1996;  75 233-238
  • 18 Agnelli G, Piovella F, Buoncristiani P. Enoxaparin plus compression stockings compared with compression stockings alone in the prevention of venous thromboembolism after elective neurosurgery.  N Engl J Med . 1998;  339 80-85
  • 19 Ornstein D, Zacharski L. Treatment of cancer with anticoagulants: rationale in the treatment of melanoma.  Int J Hematol . 2001;  73 157-161
  • 20 Kaufmann R, Patt S, Schafberg H. Functional thrombin receptor PAR1 in primary cultures of human glioblastoma cells.  Neuroreport . 1998;  9 709-712
  • 21 Ogiichi T, Hirashima Y, Nakamura S. Tissue factor and cancer procoagulant expressed by glioma cells participate in their thrombin-mediated proliferation.  J Neurooncol . 2000;  46 1-9
  • 22 Valenzuela R, Shainoff J, DiBello P. Immunoelectrophoretic and immunohistochemical characterizations of fibrinogen derivatives in atherosclerotic aortic intimas and vascular prosthesis pseudo-intimas.  Am J Pathol . 1992;  141 861-880
  • 23 Kudryk B, Rohoza A, Ahadi M, Chin J, Wiebe M. Specificity of a monoclonal antibody for the NH2-terminal region of fibrin.  Mol Immunol . 1984;  21 89-94
  • 24 Ruf W, Mueller B. Tissue factor signalling.  Thromb Haemost . 1999;  82 175-182
  • 25 Bromberg M, Konigsberg W, Madison J, Pawashe A, Garen A. Tissue factor promotes melanoma metastasis by a pathway independent of blood coagulation.  Proc Natl Acad Sci USA . 1995;  92 8205-8209
  • 26 Fischer E, Riewald M, Huang H-Y. Tumor cell adhesion and migration supported by interaction of a receptor-protease complex with its inhibitor.  J Clin Invest . 1999;  104 1213-1221
  • 27 Ruf W, Mueller B. Tissue factor in cancer angiogenesis and metastasis.  Curr Opin Hematol . 1996;  3 379-384
  • 28 Abe K, Shoji M, Chen J. Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor.  Proc Natl Acad Sci USA . 1999;  96 8663-8668
  • 29 Berkman R, Merrill M, Reinhold W. Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms.  J Clin Invest . 1993;  91 153-159
  • 30 Jensen R. Growth factor-mediated angiogenesis in the malignant progression of glial tumors: a review.  Surg Neurol . 1998;  48 189-196
  • 31 Schiff D, DeAngelis L. Therapy of venous thromboembolism in patients with brain metastases.  Cancer . 1994;  73 493-498
  • 32 Bona R, Hickey A, Wallace D. Warfarin is safe as secondary prophylaxis in patients with cancer and a previous episode of venous thrombosis.  Am J Clin Oncol . 2000;  23 71-73
  • 33 Hutten B, Prins M, Gent M. Incidence of recurrent thromboembolism and bleeding complications among patients with venous thromboembolism in relation to both malignancy and achieved International Normalized Ratio: a retrospective analysis.  J Clin Oncol . 2000;  18 3078-3083
  • 34 Ornstein D, Zacharski L. The use of heparin for treating human malignancies.  Haemostasis . 1999;  29(Suppl S1) 48-60
  • 35 Siragusa S, Cosmi B, Piovella F, Hirsh J, Ginsberg J. Low-molecular weight heparins and unfractionated heparin in the treatment of patients with acute venous thromboembolism: results of a meta-analysis.  Am J Med . 1996;  100 269-277
  • 36 Gould M, Dembitzer A, Sanders G, Garber A. Low-molecular-weight heparins compared with unfractionated heparin for treatment of acute deep venous thrombosis. A cost-effectiveness analysis.  Ann Intern Med . 1999;  130 789-799
  • 37 Hettiarachchi R, Smorenburg S, Ginsberg J. Do heparins do more than just treat thrombosis?.  <~>The influence of heparins on cancer spread. Thromb Haemost . 1999;  82 947-952
  • 38 Lensing A, Prins M, Davidson B, Hirsh J. Treatment of deep venous thrombosis with low-molecular weight heparins. A meta-analysis.  Arch Intern Med . 1995;  1995 601-607
  • 39 Turpie A, Gallus A, Hoek J. A synthetic pentasaccharide for the prevention of deep-vein thrombosis after total hip replacement.  N Engl J Med . 2001;  344 619-625
  • 40 Eriksson B, Ogren M, Agnelli G. The oral direct thrombin inhibitor ximelagatran (pINN, formerly H 376/95) and its subcutaneous form melagatran compared with enoxaparin as thromboprophylaxis after total hip or total knee replacement.  Thromb Haemost . 2001;  Suppl OC1638-OC1638 Abst
  • 41 Eriksson H, Wahlander K, Gustafsson D. Efficacy and tolerability of the novel, oral direct thrombin inhibitor, ximelagatran (pINN, formerly H 376/95), compared with standard therapy for the treatment of acute deep vein thrombosis.  Thromb Haemost . 2001;  Suppl OC2348-OC2348 Abst
  • 42 Francis C, Davidson D, Berkowitz S. Randomized, double-blind, comparative study of ximelagatran (pINN, formerly 376/95), an oral direct thrombin inhibitor, and warfarin to prevent venous thromboembolism (VTE) after total knee arthroplasty (TKA).  Thromb Haemost . 2001;  Suppl OC44-OC44
  • 43 Bergqvist D, Holmdahl L, Solhaug J-H, Eriksson U. Efficacy and safety of subcutaneous melagatran and oral ximelagatran (pINN, formerly H 376/95) as prophylaxis against thromboembolic complications following general abdominal surgery.  Thromb Haemost . 2001;  Suppl OC1020-OC1020 Abst
  • 44 Ishibashi H, Nakagawa K, Onimaru M. Sp1 decoy transfected to carcinoma cells suppresses the expression of vascular endothelial growth factor, transforming growth factor β1, and tissue factor and also cell growth and invasion activities.  Cancer Res . 2000;  60 6531-6536
  • 45 Bajaj M, Bajaj S. Tissue factor pathway inhibitor: potential therapeutic applications.  Thromb Haemost . 1997;  78 471-477
  • 46 Abraham E. Tissue factor inhibition and clinical trial results of tissue factor pathway inhibitor in sepsis.  Crit Care Med . 2000;  28(Suppl) S31-S33
  • 47 Amirkhosravi A, Meyer T, Chang J-Y. Tissue factor pathway inhibitor reduces experimental lung metastasis of B16 melanoma.  Blood . 2000;  96(Part 1) 565a-565a Abst
  • 48 }Ferro D, Basili S, Pratico D. Vitamin E reduces monocyte tissue factor expression in cirrhotic patients.  Blood . 1999;  93 2945-2950
  • 49 Holschermann H, Kohl O, Maus U. Cyclosporin A inhibits monocyte tissue factor activation in cardiac transplant recipients.  Circulation . 1997;  96 4232-4238
  • 50 Susen S, Hazzan M, Labalette M. Pentoxifylline prevents upregulation of monocyte tissue factor in renal transplant recipients undergoing post-graft complications.  Thromb Haemost . 2000;  84 764-769
  • 51 Amirkhosravi A, Meyer T, Warnes G. Pentoxifylline inhibits hypoxia-induced upregulation of tumor cell tissue factor and vascular endothelial growth factor.  Thromb Haemost . 1998;  80 598-602
  • 52 Falanga A, Consonni R, Marchetti M. Cancer procoagulant and tissue factor are differently modulated by all-trans-retinoic acid in acute promyelocytic leukemia cells.  Blood . 1998;  92 143-151
  • 53 Koyama T, Hirosawa S. Anticoagulant effects of synthetic retinoids and activated vitamin D3.  Semin Thromb Hemost . 1998;  24 217-226
  • 54 Tenno T, Oberg F, Nilsson K, Siegbahn A. Induction of differentiation in U-937 and NB4 cells is associated with inhibition of tissue factor production.  Eur J Haematol . 1999;  63 112-119
  • 55 Falanga A, Iacoviello L, Evangelista V. Loss of blast cell procoagulant activity and improvement of hemostatic variables in patients with acute promyelocytic leukemia administered all-trans-retinoic acid.  Blood . 1995;  86 1072-1081
  • 56 DiSanto A, Napoleone E, Donati M, Lorenzet R. Angiotensin II upregulates tissue factor expression by human monocytes.  Thromb Haemost . 2001;  Suppl OC215-OC215 Abst
  • 57 Napoleone E, DiSanto A, Donati M, Lorenzet R. Renin-angiotensin blockade downregulates tissue factor expression by human endothelial cells.  Thromb Haemost . 2001;  Suppl OC62-OC62 Abst
  • 58 Corseaux D, Ollivier V, Fontaine V. Hemostasis imbalance in experimental hypertension. Prevention by zofenopril.  Thromb Haemost . 2001;  Suppl OC1024-OC1024 Abst
  • 59 Bellosta S, Ferri N, Bernini F, Paoletti R, Corsini A. Non-lipid-related effects of statins.  Ann Intern Med . 2000;  32 164-176
  • 60 Bouterfa H, Sattelmeyer V, Czub S. Inhibition of Ras farnesylation by lovastatin leads to downregulation of proliferation and migration in primary cultured human glioblastoma cells.  Anticancer Res . 2000;  20 2761-2772
  • 61 Feleszko W, Balkowiec E, Sieberth E. Lovastatin and tumor necrosis factor-alpha exhibit potentiated antitumor effects against Ha-ras-transformed murine tumor via inhibition of tumor-induced angiogenesis.  Int J Cancer . 1999;  81 560-567
  • 62 Kikuchi T, Nagata Y, Abe T. In vitro and in vivo antiproliferative effects of simvastatin, an HMG-CoA reductase inhibitor, on human glioma cells.  J Neurooncol . 1997;  34 233-239
  • 63 Macaulay R, Wang W, Dimitroulakos J, Becker L, Yeger H. Lovastatin-induced apoptosis of human medulloblastoma cell lines in vitro.  J Neurooncol . 1999;  42 1-11
  • 64 Ray J, Mamdani M, Tsuyuki R. Use of statins and the subsequent development of deep vein thrombosis.  Arch Intern Med . 2001;  161 1405-1410
  • 65 Rosenson R, Tangney C. Antiatherothrombotic properties of statins.  JAMA . 1998;  279 1643-1650
  • 66 Musial J, Undas A, Dreger B, Brozek J, Szczeklik A. Treatment with simvastatin and low-dose aspirin lowers thrombin generation and C-reactive protein (CRP) in patients with ischemic heart disease (IHD) and borderline-high cholesterol levels.  Thromb Haemost . 1999;  Suppl 728-728 Abst
  • 67 Colli S, Lalli M, Eligini S. Vastatins inhibit tissue factor expression by human macrophages.  Thromb Haemost . 1997;  Suppl 199-199 Abst
  • 68 Allessandri C, Ferro D, Basilim S. Simvastatin reduces enhanced monocyte tissue factor expression in patients with type IIa hypercholesterolemia.  Thromb Haemost . 1997;  Suppl 206-206 Abst
  • 69 Soma M, Baetta R, Renzis M D. In vivo enhanced antitumor activity of carmustine [N,N′-bis(2-chloroethyl)-N-nitrosourea] by simvastatin.  Cancer Res . 1995;  55 597-602
  • 70 Prasanna P, Thibault A, Liu L, Samid D. Lipid metabolism as a target for brain cancer therapy: synergistic activity of lovastatin and sodium phenylacetate against human glioma cells.  J Neurochem . 1996;  66 710-716
  • 71 Ornstein D, Dixon P, McGlasson D. Lovastatin inhibits tissue factor expression by cultured human melanoma cells- a possible explanation for antineoplastic activity.  Thromb Haemost . 2001;  Suppl P566-P566 Abst
  • 72 Thibault A, Samid D, Tompkins A. Phase I study of lovastatin, an inhibitor of the mevalonate pathway, in patients with cancer.  Clin Cancer Res . 1996;  2 483-491
  • 73 Larner J, Jane J, Laws E. A phase I-II trial of lovastatin for anaplastic astrocytoma and glioblastoma multiforme.  Am J Clin Oncol (CCT) . 1998;  21 579-583
  • 74 Splichal J, Ornstein D, Hong-Dice Y, Downs J, Fischer J. Lovastatin for the prevention of melanoma: analysis of AFCAPS/TexCAPS.  Proc Am Soc Clin Oncol . 2001;  20 351a-351a Abst
  • 75 Ornstein D, Zacharski L, Memoli V. Coexisting macrophage-associated fibrin formation and tumor cell urokinase in squamous cell and adenocarcinoma of the lung tissues.  Cancer . 1991;  68 1061-1067
  • 76 Kudryk B, Rohoza A, Ahadi M, Chin J, Wiebe M. Specificity of a monoclonal antibody for the NH2-terminal fragments derived from fibrinogen and fibrin.  Mol Immunol . 1983;  20 1191-2000
    >