Horm Metab Res 2002; 34(3): 111-115
DOI: 10.1055/s-2002-23192
Original Basic
© Georg Thieme Verlag Stuttgart · New York

Acute Stimulation of Glucose Uptake by Leptin in L6 Muscle Cells

S.  H.  Bates 1 , J.  V.  Gardiner 2 , R.  B.  Jones 1 , S.  R.  Bloom 2 , C.  J.  Bailey 1
  • 1School of Life and Health Sciences, Aston University, Birmingham UK
  • 2Department of Metabolic Medicine, Imperial College, School of Medicine, Hammersmith Hospital, London, UK
Further Information

Publication History

8 October 2001

12 December 2001

Publication Date:
26 March 2002 (online)

Abstract

The adipocyte hormone, leptin, acts via the central nervous system to modulate glucose metabolism by skeletal muscle, but the direct effects of leptin on glucose metabolism by skeletal muscle are unclear. In this study, we have examined effects of leptin on glucose uptake by cultured L6 muscle cells assessed with the non-metabolised glucose analogue 2-deoxy-D-glucose. Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis of RNA showed that L6 muscle cells express a short isoform of the leptin receptor (ObRa), but not the long isoform (ObRb). In the absence of added insulin, incubation of L6 muscle cells with murine leptin (10 -11-10 -8 M) for 10 min and 1 h increased glucose uptake by 15 % - 23 %. This effect of leptin was lost by 4 h. Leptin (10 -10 - 10 -9 M) initially (after 10 min) suppressed insulin-stimulated glucose uptake by 14 - 16 %, but had no effect in the longer term. Leptin-stimulated glucose uptake was inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin, but not by the janus kinase-2 (JAK-2) inhibitor tyrphostin AG490. The results suggest that leptin can act directly on L6 muscle cellsvia a short leptin receptor isoform to acutely stimulate basal (but not insulin-stimulated) glucose uptake via a PI3K-dependent pathway.

  • 1 Rosenbaum M, Leibel R L. Leptin: a molecule integrating somatic energy stores, energy expenditure and fertility.  Trends Endocrinol Metab. 1998;  9 117-124
  • 2 Coleman R A, Herrmann T S. Nutritional regulation of leptin in humans.  Diabetologia. 1999;  42 639-646
  • 3 Dagogo-Jack S. Regulation and possible significance of leptin in humans: leptin in health and disease.  Diabetes Revs. 1999;  7 23-38
  • 4 Fruhbeck G, Salvador J. Relation between leptin and the regulation of glucose metabolism.  Diabetologia. 2000;  43 3-12
  • 5 Baron A D, Brechtel G, Wallace P, Edelman S V. Rates and tissue sites of non-insulin and insulin-mediated glucose uptake in humans.  Am J Physiol. 1988;  255 E769-E774
  • 6 Ghiliardi N, Ziegler S, Wiestner A, Stoffel R, Heim M, Radek S C. Defective STAT signalling by the leptin receptor in diabetic mice.  Proc Natl Acad Sci USA. 1996;  93 6231-6235
  • 7 Liu Y L, Emilsson V, Cawthorne M A. Leptin inhibits glycogen synthesis in the isolated soleus muscle of obese (ob/ob) mice.  FEBS Lett. 1997;  411 351-355
  • 8 Tartaglia L A. The leptin receptor.  J Biol Chem. 1997;  272 6093-6096
  • 9 Fruhbeck G, Garcia-Granero M, Martinez J A. Pre- and post-prandial expression of the leptin receptor splice variants OB-Ra and OB-Rb in murine peripheral tissues.  Physiological Res. 1999;  48 189-195
  • 10 Cusin I, Zakrzewska K E, Boss O, Muzzin P, Giacobino J P, Ricquier D, Jeanrenaud B, Rohner-Jeanrenaud F. Chronic central leptin infusion enhances insulin-stimulated glucose metabolism and favours the expression uncoupling proteins.  Diabetes. 1998;  47 1014-1019
  • 11 Yaspelkis B B, Ansari L, Ramey E L, Holland G J, Loy S F. Chronic leptin administration increases insulin-stimulated skeletal muscle glucose uptake and transport.  Metabolism. 1999;  48 671-676
  • 12 Wang J L, Chinookoswong N, Scully S, Qi M, Shi Z. Differential effects of leptin in regulation of tissue glucose utilization in vivo.  Endocrinology. 1999;  140 2117-2124
  • 13 Bailey C J, Bates S H, Turner S L, Rossi M, Morgan I, Bloom S R. Leptin improves insulin sensitivity of skeletal muscle in obese-diabetic ob/ob mice.  Pharm Pharmacol Comm. 2000;  6 29-35
  • 14 Kamohara S, Burcelin R, Halaas J L, Friedman J M, Charron M J. Acute stimulation of glucose metabolism in mice by leptin treatment.  Nature. 1997;  389 374-377
  • 15 Burcelin R, Kamohara S, Li J, Tannenbaum G S, Charron M J, Friedman J M. Acute intravenous leptin infusion increases glucose turnover but not skeletal muscle glucose uptake in ob/ob mice.  Diabetes. 1999;  48 1264-1269
  • 16 Ceddia R B, William W N, Curi R. Leptin increases glucose transport and utilisation in skeletal muscle in vitro.  Gen Pharmacol. 1998;  31 799-801
  • 17 Ceddia R B, William W N, Curi R. Comparing effects of leptin and insulin on glucose metabolism in skeletal muscle: evidence for an effect of leptin on glucose uptake and decarboxylation.  Int J Obesity. 1999;  23 75-78
  • 18 Muoio D M, Dohn G L, Fiedorek F T, Tapscott E B, Coleman R A. Leptin directly alters lipid partitioning in skeletal muscle.  Diabetes. 1997;  46 1360-1363
  • 19 Furnsinn C, Brunmair B, Furtmuller R, Oeden M, English R, Waldhausl W. Failure of leptin to affect basal and insulin-stimulated glucose metabolism of rat skeletal muscle in vitro.  Diabetologia. 1998;  41 525-529
  • 20 Zierath J R, Fevert E U, Ryder J W, Berggren P O, Kahn B B. Evidence against a direct effect of leptin on glucose transport in skeletal muscle and adipocytes.  Diabetes. 1998;  47 1-4
  • 21 Berti L, Kellerer M, Capp E, Haring H U. Leptin stimulates glucose transport and glycogen synthesis in C2C12 myotubes: evidence for a PI3 kinase mediated effect.  Diabetologia. 1997;  40 606-609
  • 22 Kellerer M, Koch M, Metzingher E, Mushack J, Capp E, Haring H U. Leptin activates PI3-kinase in C2C12 myotubes via janus kinase-2 (JAK-2) and insulin receptor substrate-2 (IRS-2) dependent pathways.  Diabetologia. 1997;  40 1358-1362
  • 23 Yaffe D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells.  Proc Natl Acad Sci USA. 1968;  61 477-483
  • 24 Bates S H, Jones R B, Bailey C J. Insulin-like effect of pinitol.  Brit J Pharmacol. 2000;  130 1944-1948
  • 25 Chomcznski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.  Anal Biochem. 1987;  162 156-159
  • 26 Chinookoswong N, Wang J L, Stu Z Q. Leptin restores euglycemia and normalizes glucose turnover in insulin-deficient diabetes in the rat.  Diabetes. 1999;  48 1487-1492
  • 27 Okada T, Kawano T, Sakakibara T, Hazeki O, Ui M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and anti-lipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin.  J Biol Chem. 1994;  269 3568-3573
  • 28 Holman G D, Kasuga M. From receptor to transporter: insulin signalling to glucose transport.  Diabetologia. 1997;  40 991-1003
  • 29 Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, Leeder J S, Freedman M, Cohen A, Gazit A, Levitizki A, Roifman C M. Inhibition of acute lymphoblastic leukaemia by a JAK-2 inhibitor.  Nature. 1996;  379 645-648
  • 30 Muller G, Ertl J, Gerl M, Preibsch G. Leptin impairs metabolic actions of insulin in isolated rat adipocytes.  J Biol Chem. 1997;  272 10 585-10 593
  • 31 Gonzalez-Ortiz M, Martinez-Abundis E, Balcazar-Monoz B R. Serum leptin concentrations in young insulin-sensitive and insulin-resistant volunteers.  Horm Metab Res. 2000;  32 273-276

Dr. C. J. Bailey

School of Life and Health Sciences · Dept Pharmaceutical Sciences · Aston University

Birmingham B4 7ET · UK

Phone: + 44 (121) 359-3611

Fax: + 44 (121) 359-0578

    >