Semin Liver Dis 2002; 22(2): 137-144
DOI: 10.1055/s-2002-30100
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Biochemical and Cellular Mechanisms of Toxic Liver Injury

Neil Kaplowitz
  • USC School of Medicine, Los Angeles, California
Further Information

Publication History

Publication Date:
16 May 2002 (online)

ABSTRACT

The pathogenesis of drug- or toxin-induced liver injury usually involves the participation of toxic metabolites that either elicit an immune response or directly affect the biochemistry of the cell. The clinical appearance of hepatitis is then a consequence of cell death mediated by either the extrinsic immune system (e.g., cytotoxic T cells) or intracellular stress. Intracellular stress can lead to apoptotic or necrotic cell death, depending on the extent of mitochondrial involvement and the balance of factors that activate and inhibit the Bcl2 family of proteins and the caspases. Drug metabolites can undergo or promote a variety of chemical reactions, including covalent binding, depletion of reduced glutathione, or oxidative stress with consequent effects on proteins, lipids, and DNA. These chemical consequences can directly affect organelles such as mitochondria, cytoskeleton, endoplasmic reticulum, microtubules, or nucleus or indirectly influence these organelles through activation or inhibition of signaling kinases, transcription factors, and gene expression profiles. The outcome may be either triggering of the necrotic or apoptotic process or sensitization to the lethal action of cytokines of the immune system intrinsic to the liver.

REFERENCES

  • 1 Zimmerman H. Hepatotoxicity: The Adverse Effects of Drugs and Other Chemicals on the Liver, 2nd ed. Philadelphia. Lippincott Williams & Wilkins 1999
  • 2 Kaplowitz N. Drug-induced liver disorders: implications for drug development and regulation.  Drug Saf . 2001;  24 483-490
  • 3 Kaplowitz N. Cell death at the millennium: implications for liver diseases.  Clin Liver Dis . 2000;  4 1-23
  • 4 Kaplowitz N. Mechanisms of liver cell injury.  J Hepatol . 2000;  32 39-47
  • 5 Robin M, LeRoy M, Descatoire V, Pessayre D. Plasma membrane cytochromes P450 as neoantigens and autoimmune targets in drug-induced hepatitis.  J Hepatol . 1997;  26 23-30
  • 6 Liu Z-X, Kaplowitz N. Immune-mediated drug-induced liver disease (in press).  Clin Liver Dis.
  • 7 Kaplowitz N. Mechanisms of cell death and relevance to drug hepatotoxicity. In: Kaplowitz N, DeLeve L, eds. Drug Hepatotoxicity New York: Marcel Dekker (in press)
  • 8 Thornberry N A, Lazebnik Y. Caspase: enemies within.  Science . 1998;  281 1312-1316
  • 9 Leist M, Single B, Castoldi A F. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis.  J Exp Med . 1997;  185 1481-1486
  • 10 Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H. In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis and autolytic cell death.  Hepatology . 1995;  21 1465-1468
  • 11 Dong Z, Saikumar P, Weinberg J, Venkatachalam M. Internucleosomal DNA cleavage triggered by plasma membrane damage during necrotic cell death.  Am J Pathol . 1997;  151 1205-1213
  • 12 Ashkenazi A, Dixit V. Death receptors: signaling and modulation.  Science . 1998;  281 1305-1308
  • 13 Faubion W A, Gores G. Death receptors in liver biology and pathology.  Hepatology . 1999;  29 1-4
  • 14 Wei M C, Zong W X, Cheng E. Pro-apoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death.  Science . 2001;  292 727-730
  • 15 Puthalakath H, Villunger A, O'Reilly L A. Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis.  Science . 2001;  293 1829-1832
  • 16 Kyriakis J, Banerjee P, Nilolakaki E. The stress-activated protein kinase subfamily of c-Jun kinases.  Nature . 1994;  369 156-160
  • 17 Zamzani N, Marzo I, Susin S. Thiol crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition.  Oncogene . 1998;  16 1055-1063
  • 18 Slee E A, Adrain C, Martin S J. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis.  J Biol Chem . 2001;  276 7320-7326
  • 19 Susin S, Lorenzo H, Zamzani N. Molecular characterization of mitochondrial apoptosis-inducing factor.  Nature . 1999;  397 441-446
  • 20 Lorenzo H K, Susin S A, Penninger J, Kroemer G. Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death.  Cell Death Differ . 1999;  6 516-524
  • 21 Rao R V, Hermel E, Castro-Obregon S. Coupling endoplasmic reticulum stress to the cell death program: mechanism of caspase activation.  J Biol Chem . 2001;  276 33869-33874
  • 22 Kim Y-M, Talanian R V, Billiar T R. Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms.  J Biol Chem . 1997;  272 31138-31148
  • 23 Hampton M B, Orrenius S. Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis.  FEBS Lett . 1997;  414 552-556
  • 24 Hentze H, Kunstle G, Volbracht C. CD95-mediated murine hepatic apoptosis requires an intact glutathione status.  Hepatology . 1999;  30 177-185
  • 25 Goyal L. Cell death inhibition: keeping caspases in check.  Cell . 2001;  104 805-808
  • 26 Masser D D, Antoine C, Bourget L. Role of the human heat shock protein hsp 70 in protection against stress-induced apoptosis.  Mol Cell Biol . 1997;  17 5317-5327
  • 27 Hu S, Vincenz C, Ni J. I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1- and CD-95-induced apoptosis.  J Biol Chem . 1997;  272 17255-17257
  • 28 Adams J M, Cory S. The Bcl-2 protein family: arbiters of cell survival.  Science . 1998;  281 1322-1326
  • 29 Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis.  Nat Med . 1997;  3 614-620
  • 30 Rust C, Karnitz L M, Paya C V. The bile acid tauroursodeoxycholate activates a phosphatidylinositol 3-kinase dependent survival signaling cascade.  J Biol Chem . 2000;  275 20210-20216
  • 31 Aggarwal B. Apoptosis and nuclear factor-κB: a tale of association and dissociation.  Biochem Pharmacol . 2000;  60 1033-1039
  • 32 Wang C Y, Mayo M W, Korneluk R G. NF-κB antiapoptosis: induction of TRAF1 and C-IAP1 and c-IAP2 to suppress caspase-8 activation.  Science . 1998;  281 1680-1683
  • 33 Czaja M, Xu J, Alt E. Prevention of carbon tetrachloride- induced rat liver injury by soluble tumor necrosis factor receptor.  Gastroenterology . 1995;  108 1849-1854
  • 34 Morio L A, Chiu H, Sprowles K A. Distinct roles of tumor necrosis factor-α and nitric oxide in acute liver injury induced by carbon tetrachloride in mice.  Toxicol Appl Pharmacol . 2001;  172 44-51
  • 35 Laskin D L, Gardner C R, Price V F, Jollow D J. Modulation of macrophage functioning abrogates the acute hepatotoxicity of acetaminophen.  Hepatology . 1995;  21 1045-1050
  • 36 Boess F, Bopst M, Althaus R. Acetaminophen hepatotoxicity in tumor necrosis factor/lymphotoxin-α gene knockout mice.  Hepatology . 1998;  27 1021-1029
  • 37 Hogaboam C M, Bone-Lasron C L, Steinhauser M L. Exaggerated hepatic injury due to acetaminophen challenge in mice lacking c-c chemokine receptor 2.  Am J Pathol . 2000;  156 1245-1252
  • 38 Iimuro Y, Nishiura T, Hellerbrand C. NFκB prevents apoptosis and liver dysfunction during liver regeneration.  J Clin Invest . 1998;  101 802-811
  • 39 Leist M, Gantner F, Naumann H. Tumor necrosis factor-induced apoptosis during the poisoning of mice with hepatotoxins.  Gastroenterology . 1997;  112 923-934
  • 40 Haouzi D, Lekehal M, Tinel M. Prolonged, but not acute, glutathione depletion promotes Fas-mediated mitochondrial permeability transition and apoptosis in mice.  Hepatology . 2001;  33 1181-1188
  • 41 Goosens V, Grooten J, DeVos K, Fiers W. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity.  Proc Natl Acad Sci USA . 1995;  92 8115-8119
  • 42 Colell A, Garcia-Ruiz C, Miranda M. Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor.  Gastroenterology . 1998;  115 1541-1551
  • 43 Colell A, Coll O, Garcia-Ruiz C. Tauroursodeoxycholic acid protects hepatocytes from ethanol-fed rats against TNF-induced cell death by replenishing mitochondrial GSH.  Hepatology . 2001;  34 964-971
  • 44 Garcia-Ruiz C, Colell A, Paris R, Fernandez-Checa J C. Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release and caspase activation.  FASEB J . 2000;  14 847-858
  • 45 Sithoh M, Nishitoh H, Fuju M. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK)-1.  EMBO J . 1998;  17 2596-1206
  • 46 Adler V, Yin Z, Fuchs S. Regulation of JNK by GSTpi.  EMBO J . 1999;  18 1321-1334
  • 47 Ginne-Pease M E, Whisler R L. Optimal NF-κB mediated transcriptional responses in Jurkat T cells exposed to oxidative stress are dependent on intracellular glutathione and costimulatory signals.  Biochem Biophys Res Commun . 1996;  226 695-702
  • 48 Kaplowitz N, Tsukamoto H. Oxidative stress and liver disease.  Prog Liver Dis . 1996;  14 131-159
  • 49 Adamson G, Harman A. Oxidative stress in cultured hepatocytes exposed to acetaminophen.  Biochem Pharmacol . 1993;  45 2289-2294
  • 50 Arnaiz S, Llesuy S, Cutrin J, Boveris A. Oxidative stress by acute acetaminophen administration in mouse liver.  Free Radic Biol Med . 1995;  19 303-310
  • 51 Sneed R A, Buchweitz J P, Jean P A, Ganey P E. Pentoxifylline attenuates bacterial lipopolysaccharide-induced enhancement of allyl alcohol hepatotoxicity.  Toxicol Sci . 2000;  56 203-210
  • 52 Berson A, DeBeco V, Letteron P. Steatohepatitis-inducing drugs cause mitochondrial dysfunction and lipid peroxidation in rat hepatocytes.  Gastroenterology . 1998;  114 764-774
  • 53 Feng G, Kaplowitz N. Colchicine protects mice from the lethal effect of agonistic anti-Fas antibody.  J Clin Invest . 2000;  105 329-339
  • 54 Botla R, Spivey J, Aguilar H. Ursodeoxycholate (UDCA) inhibits the mitochondrial membrane permeability transition induced by glycochenodeoxycholate: a mechanism of UDCA cytoprotection.  J Pharmacol Exp Ther . 1995;  272 930-938
  • 55 Rodrigues C MP, Fan G, Ma X. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation.  J Clin Invest . 1998;  101 2790-2799
  • 56 Kovalovich K, Li W, DeAngelis R. Interleukin-6 protects against Fas-mediated death by establishing a critical level of anti-apoptotic hepatic proteins FLIP, Bcl-2, and Bcl-xL.  J Biol Chem . 2001;  276 26605-26613
  • 57 Lemasters J J. Mechanisms of hepatic toxicity v.  necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol . 1999;  276 G1-G6
  • 58 Lemaire C, Andreau K, Souvannavong V. Inhibition of caspase induces a switch from apoptosis to necrosis.  FEBS Lett . 1998;  425 266-270
    >