Semin Vasc Med 2002; 2(2): 191-198
DOI: 10.1055/s-2002-32042
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Pathophysiological Role of Amadori-Glycated Proteins in Diabetic Microangiopathy

Casper G. Schalkwijk1, 4 , Mariska Lieuw-a-Fa2, 4 , Victor W.M. van Hinsbergh2, 4, 5 , Coen D.A. Stehouwer3, 4
  • 1Department of Clinical Chemistry, Vrije Universiteit Medical Center, Amsterdam
  • 2Department of Physiology, Vrije Universiteit Medical Center, Amsterdam
  • 3Department of Internal Medicine, Vrije Universiteit Medical Center, Amsterdam, the
  • 4Institute for Cardiovascular Research, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
  • 5Gaubius Laboratory TNO-PG, Leiden, The Netherlands
Further Information

Publication History

Publication Date:
06 June 2002 (online)

ABSTRACT

Early and advanced nonenzymatic glycation of proteins are increased in diabetes. Although Amadori-glycated proteins are the major glycated modifications, most studies so far have focused on the role of advanced glycation end-products (AGEs) in diabetes-related vascular complications. It was only recently that the role of Amadori-glycated proteins has come under consideration. Here we review data that point to an important role of Amadori-modified glycated serum proteins in diabetic microangiopathy. Amadori-glycated albumin induces the activation of glomerular mesangial and endothelial cells to a phenotype that may be linked to the pathogenesis of diabetic microangiopathy, that is, by the stimulation of protein kinase C, activation of transforming growth factor β, and the expression of extracellular matrix proteins. In type 1 diabetic patients, levels of Amadori-glycated proteins are independently associated with nephropathy and retinopathy. Reduction of Amadori-glycated albumin levels in diabetic animal models ameliorates the progression of nephropathy and retinopathy, indicating a causal role of Amadori-glycated proteins in the pathogenesis of diabetic nephropathy and retinopathy. Based on these data, inhibition of Amadori-glycated albumin may be a target for reduction of diabetic vascular complications.

REFERENCES

  • 1 Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus.  N Engl J Med . 1993;  329 977-986
  • 2 United Kingdom Prospective Diabetes Study Group. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).  Lancet . 1998;  352 837-853
  • 3 Ruderman N B, Williamson J R, Brownlee M. Glucose and diabetic vascular disease.  FASEB J . 1992;  6 2905-2914
  • 4 Vlassara H, Bucala R, Striker L. Biology of disease. Pathogenic effects of advanced glycosylation: biochemical, biologic and clinical implications for diabetes and aging.  Lab Invest . 1994;  70 138-151
  • 5 Curtiss L K, Witztum J L. A novel method for generating region-specific monoclonal antibodies to modified proteins.  J Clin Invest . 1983;  72 1427-1438
  • 6 Makita Z, Vlassara H, Cerami A, Bucala R. Immunochemical detection of advanced glycosylation end products in vivo.  J Biol Chem . 1992;  267 5133-5138
  • 7 Iberg N, Fluckiger R. Nonenzymatic glycosylation of human serum albumin in vitro.  J Biol Chem . 1983;  258 6142-6146
  • 8 Thornalley P J, Langborg A, Minhas H S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose.  Biochem J . 1999;  344 109-116
  • 9 Edelstein D, Brownlee M. Mechanistic studies of advanced glycation end product inhibition by aminoguanidine.  Diabetes . 1992;  41 26-29
  • 10 Schalkwijk C G, Ligtvoet N, Twaalfhoven H. Amadori-albumin in type I diabetic patients: correlation with markers of endothelial function, association with diabetic nephropathy and localization in retinal capillaries.  Diabetes . 1999;  48 2446-2453
  • 11 Chen H JC, Cerami A. Mechanisms of inhibition of advanced glycosylation by aminoguanidine in vitro.  J Carbohydrate Chem . 1993;  12 731-742
  • 12 Soulis Liparoto T, Cooper M, Papazoglou D. Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozocin-induced diabetic rat.  Diabetes . 1991;  40 1328-1334
  • 13 Hammes H, Martin S, Federlin K. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy.  Proc Natl Acad Sci USA . 1991;  88 11555-11558
  • 14 Cameron N E, Cotter M A, Dines K. Effects of aminoguanidine on peripheral nerve function and polyol pathway metabolites in streptozotocin-diabetic rats.  Diabetologia . 1992;  35 946-950
  • 15 Dolhofer R, Wieland O H. Increased glycosylation of serum albumin in diabetes mellitus.  Diabetes . 1980;  29 417-422
  • 16 Dyer D G, Dunn J A, Thorpe S R. Accumulation of Maillard reaction products in skin collagen in diabetes and aging.  J Clin Invest . 1993;  91 2463-2469
  • 17 Stehouwer C DA, Lambert J, Donker A JM. Endothelial dysfunction and pathogenesis of diabetic angiopathy.  Cardiovasc Res . 1997;  34 55-68
  • 18 Cohen M P, Clements R S, Cohan J A. Glycated albumin promotes a generalized vasculopathy in the db/db mouse.  Biochem Biophys Res Comm . 1996;  218 72-75
  • 19 Cohen M P, Hud E. Production and characterization of monoclonal antibodies against human glycoalbumin.  J Immunol Methods . 1989;  117 121-129
  • 20 McCance D R, Dyer D G, Dunn J A. Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus.  J Clin Invest . 1993;  91 2470-2478
  • 21 Sakai H, Jinde K, Suzuki D. Localization of glycated proteins in the glomeruli of patients with diabetic nephropathy.  Nephrol Dial Transplant . 1996;  66-71
  • 22 Ghiggeri G M, Candiano G, Delfino G. Glycosyl albumin and diabetic microalbuminuria: demonstration of an altered renal handling.  Kidney Int . 1984;  25 565-570
  • 23 Layton G J, Jerums G. Effect of glycation of albumin on its renal clearance in normal and diabetic rats.  Kidney Int . 1988;  33 673-676
  • 24 Londoño I, Bendayan M. Temporary effects of circulating Amadori products on glomerular filtration properties in the normal mouse.  Am J Physiol Renal Physiol . 2001;  280 F103-F111
  • 25 Jensen P K, Christiansen J S, Steven K. Renal function in streptozotocin-diabetic rats.  Diabetologia . 1981;  21 409-414
  • 26 Sabbatini M, Sansone G, Uccello F. Early glycosylation products induce glomerular hyperfiltration in normal rats.  Kidney Int . 1992;  42 875-881
  • 27 McVerry B A, Fisher C, Hopp A. Production of pseudodiabetic renal glomerular changes in mice after repeated injections of glucosylated proteins.  Lancet . 1980;  1 738-740
  • 28 Ghigger G M, Candiano G, Delfino G. Glycosyl albumin and diabetic microalbuminuria: demonstration of an altered renal handling.  Kidney Int . 1984;  25 565-570
  • 29 Cohen M P, Hud E, Wu V-Y. Amelioration of diabetic nephropathy by treatment with monoclonal antibodies against glycated albumin.  Kidney Int . 1994;  45 1673-1679
  • 30 Cohen M P, Ziyadeh F N. Role of Amadori-modified nonenzymatically glycated serum proteins in the pathogenesis of diabetic nephropathy.  J Am Soc Nephrol . 1996;  7 183-190
  • 31 Cohen M P, Masson N, Hud E. Inhibiting albumin glycation ameliorates diabetic nephropathy in the db/db mouse.  Exp Nephrol . 2000;  8 135-143
  • 32 Clements R S, Robison W G, Cohen M P. Anti-glycated albumin therapy ameliorates early retinal microvascular pathology in db/db mice.  J Diab Comp . 1998;  12 28-33
  • 33 Predescu D, Simionescu M, Simionescu N. Binding and transcytosis of glycoalbumin by the microvascular endothelium of the myocardium: evidence that glycoalbumin behaves as a bifunctional ligand.  J Cell Biol . 1988;  107 1729-1738
  • 34 Wu V-Y, Cohen M P. Identification of aortic endothelial cell binding proteins for Amadori adducts in glycated albumin.  Biochem Biophys Res Commun . 1993;  193 1131-1136
  • 35 Wu V-Y, Shearman C W, Cohen M P. Identification of calnexin as a binding protein for Amadori-modified glycated albumin.  Biochem Biophys Res Commun . 2001;  284 602-606
  • 36 Wu V-Y, Cohen M P. Receptors specific for Amadori-modified glycated albumin on murine endothelial cells.  Biochem Biophys Res Commun . 1994;  198 734-739
  • 37 Wu V-Y, Cohen M P. Evidence for a ligand receptor system mediating the biologic effects of glycated albumin in glomerular mesangial cells.  Biochem Biophys Res Commun . 1995;  15 207:521-528
  • 38 Salazar R, Brandt R, Krantz S. Expression of fructosyllysine receptors on human monocytes and monocyte-like cell lines.  Biochim Biophys Acta . 1995;  1266 57-63
  • 39 Krantz S, Salazar R, Brandt R. Purification and partial amino acid sequencing of a fructosyllysine-specific binding protein from cell membranes of the monocyte-like cell line U937.  Biochim Biophys Acta . 1995;  1266 109-112
  • 40 Salazar R, Brandt R, Kellermann J. Purification and characterization of a 200 kDa fructosyllysine-specific binding protein from cell membranes of U937 cells.  Glycoconj J . 2000;  17 713-716
  • 41 Brandt R, Landmesser C, Vogt L. Differential expression of fructosyllysine-specific receptors on monocytes and macrophages and possible pathophysiological significance.  Diabetologia . 1996;  39 1140-1147
  • 42 Schmidt A M, Vianna M, Gerlach M. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface.  J Biol Chem . 1992;  267 14987-14997
  • 43 Araki N, Higashi T, Mori T. Macrophage scavenger receptor mediates the endocytic uptake and degradation of advanced glycation end-products of the Maillard reaction.  Eur J Biochem . 1995;  230 408-415
  • 44 Cohen M P, Hud E, Wu V-Y. Glycated albumin modified by Amadori adducts modulates aortic endothelial cell biology.  Moll Cell Biochem . 1995;  143 73-79
  • 45 Amore A, Cirina P, Mitola S. Nonenzymatically glycated albumin (Amadori adducts) enhances nitric oxide synthase activity and gene expression in endothelial cells.  Kidney Int . 1997;  51 27-35
  • 46 Chen S, Cohen M P, Lautenslager G T. Glycated albumin stimulates TGF-β production and protein kinase C activity in glomerular endothelial cells.  Kidney Int . 2001;  59 673-681
  • 47 Cohen M P, Wu V-Y, Cohen J A. Glycated albumin stimulates fibronectin and collagen IV production gene by glomerular endothelial cells.  Biochem Biophys Res Commun . 1997;  238 91-94
  • 48 Cohen M P, Ziyadeh F N. Amadori glucose adducts modulate mesangial cell growth and collagen gene expression.  Kidney Int . 1994;  45 475-484
  • 49 Ziyadeh F N, Han D-C, Cohen J A. Glycated albumin stimulates fibronectin gene expression in glomerular mesangial cells: involvement of the transforming growth factor-beta system.  Kidney Int . 1998;  53 631-638
  • 50 Cohen M P, Ziyadeh F N, Lautenslager G T. Glycated albumin stimulation of PKC-beta activity is linked to increased collagen IV in mesangial cells.  Am J Physiol . 1999;  276 F684-F690
  • 51 Cohen M P, Shea E, Shearman C W. ERK mediates effects of glycated albumin in mesangial cells.  Biochem Biophys Res Commun . 2001;  283 641-643
  • 52 Ichiki T, Funakoshi Y, Ito K. Expression of monocyte chemoattractant protein-1 by nonenzymatically glycated albumin (Amadori adducts) in vascular smooth muscle cells.  Biochem Biophys Res Commun . 2000;  269 666-670
  • 53 Hattori Y, Kakishita H, Akimoto K. Glycated serum albumin-induced vascular smooth muscle cell proliferation through activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by protein kinase C.  Biochem Biophys Res Commun . 2001;  281 891-896
    >